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DSNet: A Flexible Detect-to-Summarize Network
for Video Summarization

Wencheng Zhu, Jiwen Lu , Senior Member, IEEE, Jiahao Li, and Jie Zhou, Senior Member, IEEE

Abstract— In this paper, we propose a Detect-to-Summarize
network (DSNet) framework for supervised video summarization.
Our DSNet contains anchor-based and anchor-free counterparts.
The anchor-based method generates temporal interest proposals
to determine and localize the representative contents of video
sequences, while the anchor-free method eliminates the pre-
defined temporal proposals and directly predicts the importance
scores and segment locations. Different from existing supervised
video summarization methods which formulate video summa-
rization as a regression problem without temporal consistency
and integrity constraints, our interest detection framework is the
first attempt to leverage temporal consistency via the temporal
interest detection formulation. Specifically, in the anchor-based
approach, we first provide a dense sampling of temporal interest
proposals with multi-scale intervals that accommodate interest
variations in length, and then extract their long-range temporal
features for interest proposal location regression and importance
prediction. Notably, positive and negative segments are both
assigned for the correctness and completeness information of the
generated summaries. In the anchor-free approach, we alleviate
drawbacks of temporal proposals by directly predicting impor-
tance scores of video frames and segment locations. Particularly,
the interest detection framework can be flexibly plugged into off-
the-shelf supervised video summarization methods. We evaluate
the anchor-based and anchor-free approaches on the SumMe
and TVSum datasets. Experimental results clearly validate the
effectiveness of the anchor-based and anchor-free approaches.

Index Terms— Video summarization, interest proposal, anchor-
based detection, anchor-free detection, temporal modeling.

I. INTRODUCTION

THE explosive growth of video data has brought an
urgency to develop computer vision techniques that can

efficiently browse and watch videos [5], [37]. To address this

Manuscript received June 7, 2020; revised October 8, 2020; accepted
November 18, 2020. Date of publication December 1, 2020; date of cur-
rent version December 8, 2020. This work was supported in part by the
National Key Research and Development Program of China under Grant
2017YFA0700802; in part by the National Natural Science Foundation of
China under Grant 61822603, Grant U1813218, Grant U1713214, and Grant
61672306; in part by a grant from the Institute for Guo Qiang, Tsinghua
University; and in part by the Shenzhen Fundamental Research Fund (Subject
Arrangement) under Grant JCYJ20170412170602564. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Xiangqian Wu. (Corresponding author: Jiwen Lu.)

Wencheng Zhu, Jiwen Lu, and Jiahao Li are with the Beijing National
Research Center for Information Science and Technology (BNRist), Tsinghua
University, Beijing 100084, China, also with the State Key Laboratory
of Intelligent Technologies and Systems, Tsinghua University, Beijing
100084, China, and also with the Department of Automation, Tsinghua
University, Beijing 100084, China (e-mail: zwc17@mails.tsinghua.edu.cn;
lujiwen@tsinghua.edu.cn; lijiahao17@mails.tsinghua.edu.cn).

Jie Zhou is with the State Key Laboratory of Intelligent Technologies
and Systems, Beijing National Research Center for Information Science
and Technology (BNRist), Department of Automation, Tsinghua University,
Beijing 100084, China, and also with the Tsinghua Shenzhen International
Graduate School, Tsinghua University, Shenzhen 518055, China (e-mail:
jzhou@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TIP.2020.3039886

issue, video summarization has drawn increasing attention
over the past few years [6], [15], [62], and numerous video
summarization methods have been proposed [51], [62], [63].
While considerable progress has been achieved, existing video
summarization methods suffer from dynamic visual context
and over-fitting problems, easily leading to incorrect and
incomplete video summaries. Generally, the objective of video
summarization is to generate a more compact version of the
original video while preserving its important and relevant
contents [47], [68]. Video summarization methods usually
proceed in three steps: 1) shot boundary detection, 2) frame-
level importance score prediction, and 3) key shot selection.

There has been a rich line of research on video summariza-
tion in recent years [3], [15]. Existing video summarization
methods can be roughly classified into three categories: 1)
unsupervised [4], [14], 2) weakly-supervised [22], [57], and
3) supervised [8], [13]. For the first category, heuristic criteria,
such as representativeness [5], [35], diversity [38], [40], and
sparsity [41], [62], are exploited to identify important shots.
Representative methods include clustering based [36], [77],
dictionary learning based [32], [33], [74], subset selection
based [5], [6], reinforcement learning based [76], and adver-
sarial learning based [34], [62] approaches. For the second
category, some auxiliary information is leveraged, including
web priors [1], [3], [21], video titles [64], and video cat-
egories [39], [43]. Typical methods include video summa-
rization using web-image priors [21] and category-specific
video summarization [43]. While unsupervised and weakly-
supervised methods have achieved remarkable performance,
they cannot learn from manually created summaries. To handle
this problem, supervised methods have been proposed [9],
[16], [67], [71]. Representative methods in this category
include diverse sequential subset selection for supervised video
summarization [11], video summarization with long short-term
memory [67], retrospective encoders for video summariza-
tion [68], video summarization with attention-based encoder-
decoder networks [18], and user-ranking video summarization
[16]. However, without the temporal consistency constraint,
the predicted scores of video frames in the same semantic
segment cannot accurately represent the importance of the
corresponding segment.

To address above issues, we present a Detect-to-Summarize
network framework called DSNet, which formulates video
summarization as a temporal interest detection process and
predicts not only temporal locations of segments, but also the
corresponding importance scores. Fig. 1 illustrates the main
idea of the proposed anchor-based and anchor-free approaches.
Specifically, we capture long-range temporal dependencies
by using deep convolutional networks for feature extraction,
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Fig. 1. Illustration of the DSNet framework including the anchor-based and anchor-free approaches. Given a video sequence, we first extract the long-range
features. For the anchor-based approach, we produce interest proposals for importance classification and location offset regression, while for the anchor-free
approach, we predict the importance score, center-ness score and segment location at each location without proposals. Finally, the video summary is created
by using the predicted scores and associated segments.

as video summarization focuses on selecting representatives
and thus requires a good understanding of the whole video [8],
[67]. For the anchor-based approach, we first produce interest
proposals at each temporal location with multi-scale durations,
handling the length variations of interest. Due to the bottom-
up property, interest proposals can precisely accommodate
their boundaries. Then, we perform the interest proposal
location regression and the importance prediction. Moreover,
to reduce the number of incorrect segments, we minimize the
importance scores of negative proposals. Unlike the anchor-
based approach which is sensitive to interest proposals and
hyper-parameters, we further propose an anchor-free approach
to directly predict an importance score, a center-ness score,
and a 2D temporal location vector at each temporal location.
The anchor-based approach eliminates temporal proposals and
avoids complicated computation of temporal Intersection over
Union. Finally, we conduct key shot selection, according to
the predicted importance scores and segment locations. Exper-
imental results on two standard video summarization datasets,
SumMe [12] and TVSum [51], along with two augmented
datasets, YouTube [4] and OVP [4], show that the proposed
DSNet framework achieves highly competitive performance
compared with state-of-the-art methods.

The contributions of this work are summarized as follows:
1) We propose a Detect-to-Summarize network framework,

which offers a new perspective of video summarization
as a temporal interest detection problem, and simultane-
ously predicts importance scores and segment locations.

2) We develop the anchor-based approach that generates
temporal proposals to handle length variations of inter-
est, and the anchor-free approach that directly learns
importance scores and temporal locations, as well as a
center-ness score.

3) We conduct extensive experiments on the SumMe and
TVSum datasets, and experimental results demonstrate
the effectiveness of the proposed approaches.

II. RELATED WORK

In this section, we briefly outline three categories: 1) unsu-
pervised [70], 2) weakly-supervised [22], 3) supervised [48]
methods, and the related anchor-based and anchor-free models.

A. Unsupervised Video Summarization

Early unsupervised methods are the clustering-based
approaches like k-medoid clustering [14], [77]. These methods
mainly leveraged low-level appearance cues and motion infor-
mation [26], [36]. While good performance has been obtained,
they cannot effectively cope with videos with variations in
camera motion, illumination conditions and scene clutters [26].
Recently, many unsupervised methods have been proposed
and these methods can be roughly grouped into four sub-
categories: dictionary learning based [32], [33], [74], subset
selection based [5], [6] reinforcement learning based [76], and
adversarial learning based [9], [62], [69]. Dictionary learning
based approaches formulated video summarization as a sparse
optimization problem. For example, Elhamifar et al. [7] recon-
structed the original video by using representative elements
in a dictionary. Panda and Roy-Chowdhury [41] developed a
sparse representative selection method for multi-video summa-
rization. Subset selection based approaches selected informa-
tive subsets of video frames. For example, Elhamifar et al. [6]
determined representatives by using pairwise dissimilarities
between source and target sets. Elhamifar and Kaluza [5]
proposed an online subset selection method for video summa-
rization. Reinforcement learning based approaches conducted
a discrete sampling of actions to generate summaries. For
example, Zhou et al. [76] proposed a deep summarization
network with a diversity-representativeness reward. Adver-
sarial learning based approaches learned indistinguishable
video summaries from ground-truth summaries. For exam-
ple, Mahasseni et al. [34] developed an adversarial LSTM
Networks, where the reconstructed videos could not be dis-
criminated by the original videos. Rochan and Wang [46]
trained a video summarization model by using unpaired
data. Yuan et al. [62] leveraged mutual information among
summaries and corresponding videos via a cycle-consistent
adversarial netowrk.

B. Weakly-Supervised Video Summarization

Weakly-supervised video summarization methods exploited
auxiliary information, including web priors [3], [21], video
titles [51], and video categories [39], [43]. For example,
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Khosla et al. [21] leveraged the web-image prior information.
Cai et al. [1] trained a variational autoencoder (VAE) [23]
by using web videos. Song et al. [51] selected video shots
that are most concerned with visual concepts from title-based
image search results. Chu et al. [3] developed a video co-
summarization method to select shots of the same topics
with the frequent visual concepts across videos. Potapov
et al. [43] proposed a category-specific video summarization
method. Panda et al. [39] selected video segments by using
the derivative of the classification loss.

C. Supervised Video Summarization

Supervised methods have made significant progress, due
to human-created summaries. For example, Gygli et al. [12]
developed a linear model by using information from spatial
and temporal salience and landmarks. Gong et al. [11] and
Sharghi et al. [49] both formulated video summarization as a
Determinantal Point Process [25]. Zhang et al. [66] proposed
a non-parametric approach that transferred summary structures
from training to testing videos. Moreover, deep learning based
approaches have been proposed [16], [20]. Among them, RNN
based approaches are representative methods. For example,
Zhang et al. [67] estimated the importance scores of video
frames via a bidirectional LSTM. Zhao et al. [71], [73]
uncovered the underlying hierarchical structure of videos by
using a fixed-length hierarchical RNN and a hierarchical
structure-adaptive LSTM, respectively. Yao et al. [61] built
a pairwise deep ranking model to incorporate both spatial
and temporal information. Zhang et al. [68] formulated video
summarization as a sequence-to-sequence learning problem.
Huang et al. [16] learned multi-stage spatio-temporal repre-
sentations. Li et al. [28] developed a meta learning approach
for task-driven video summarization. Zhao et al. [72] pro-
posed a property-constrained dual learning approach for video
summarization. Hussain et al. [17] developed a multi-view
video summarization approach by using CNN and Bi-LSTM.
Furthermore, attention models [54] have been introduced into
recent video summarization methods [55]. For example, Ji
et al. [18] developed attentive encoder-decoder networks. Fajtl
et al. [8] conducted video summarization by using a self-
attention model. Ji et al. [19] learned attentive and distribution
consistent video summaries. Xiao et al. [56] developed a
query-focused approach to learn the semantic information
from video descriptions. Besides, Rochan et al. [47] applied
convolutional sequence networks for video summarization.

D. Anchor-Based and Anchor-Free Models

Due to significant progress in object detection, the idea of
region proposal network [45] has been introduced into action
localization and visual language grounding tasks. For example,
Shou et al. [50] proposed a multi-scale Segment-CNN to
identify candidate segments. Gao et al. [10] simultaneously
conducted action proposal generation and temporal coordinate
regression. Xu et al. [59] predicted variable length proposals
by using pre-defined anchors. Chao et al. [2] generated multi-
scale anchor segments for action localization. Zhao et al. [75]

applied the structured temporal pyramid to capture the tempo-
ral structure of each action instance. Yang et al. [60] proposed
an anchor-free action localization module to address actions of
extremely short or long durations. Zeng et al. [65] predicted
distances from each frame to the starting and ending frames
of segments via a dense regression network.

III. APPROACH

In this section, we elaborate the proposed Detect-to-
Summarize network. We first detail the anchor-based DSNet
approach. Then, we describe the anchor-free DSNet approach.

A. Anchor-Based Video Summarization

Fig. 2 depicts the core architecture of the proposed anchor-
based approach, which consists of feature extraction, interest
proposal generation, interest proposal classification and loca-
tion regression, and key shot selection steps.

1) Feature Extraction: Capturing long-range temporal
information is of great influence for video understanding,
especially for video summarization whose goal is to identify
the most representative video frames, therefore, the high-level
understanding of the whole video is indispensable [8], [67].
Moreover, long-range representations are beneficial to location
regression of event boundaries with more context information.
In our method, we extract frame-level features and apply a
temporal modeling layer to capture long-range representations.

Specifically, given a video sequence V of T frames, we first
employ GoogLeNet [52] without the last three layers to
extract feature vectors v j , j ∈ {i, . . . , T }. As the attention
mechanism [54] has been proved to be effective to capture
long-range dependencies [8], [18], we adopt the self-attention
mechanism [54] to extract long-range representations {w j }T

1
in default. Moreover, we investigate the effect of other long-
range sequence modeling layers including LSTM, Bi-LSTM,
and graph convolution in experiments. To integrate the long-
range representation w j with the original spatial feature v j ,
we use the summation over w j and v j . Namely, the final
representations are computed as x j = w j + v j .

2) Temporal Interest Proposals: Variable-length durations
of video interests pose unique challenges for video summariza-
tion. However, most existing supervised video summarization
methods do not take this problem into account, thereby leading
to the incomplete segment selection and unequal importance
scores within the same semantic segment. To tackle this
issue, we adopt the temporal proposal generation strategy
for supervised video summarization, which is inspired by the
recent success in region proposal networks [45] and action
localization methods [2], [58].

We generate temporal interest proposals with the pre-defined
multi-scale intervals. Mathematically, at the t th temporal loca-
tion, K interest proposals are appointed with the fixed range
[t − lk/2, t + lk/2), k = 1, 2, · · · , K , where lk represents
the duration of the kth interest proposal. Therefore, K × T
interest proposals are totally produced in a video sequence
with T frames. Since which frames will be selected as repre-
sentatives is unknown beforehand, it is better to keep the same
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Fig. 2. The architecture of the proposed anchor-based DSNet. We first apply deep convolutional networks and a sequence modeling layer to extract long-range
feature vectors. Then, the proposals are generated and pooled for importance classification and location offset regression. For testing, segments are refined by
using the predicted offsets, and are further filtered with the non-maximum suppression technique. Finally, the video summary is created.

probability for every input frame, which makes the proposal
generation strategy to be temporally invariant.

In the training phase, we assign binary class labels, i.e., pos-
itive or negative, to interest proposals. To alleviate the class
imbalance problem, we sample the positive and negative
proposals in the ratio of 1 : 3. To be more specific, we consider
a proposal to be positive when its temporal Intersection over
Union (tIoU) with any ground truth segment is higher than 0.6,
while we assign a negative label to an interest proposal with
tIoU = 0 for its unimportance, or with 0 < tIoU < 0.3 for
its incompleteness. The unimportant and incomplete interest
proposals occupy 2/3 and 1/3 of negative samples, respectively.
In addition, we observe that assigning negative proposals with
a higher tIoU, for example 0.3 < tIoU < 0.6, does harm to
summary performance. This may be caused by the confusion
of the overlap between positive and negative interest proposals.

Generally, there are several benefits for the label assignment
of interest proposals in the anchor-based approach. On one
hand, by using positive and negative proposals, our method
tends to select consecutive frames of a high tIoU with ground
truth segments and meanwhile reduce the number of irrelevant
segments. On the other hand, our method can cope with
incomplete segments by regarding proposals with 0 < tIoU <
0.3 as negative examples. Besides, by separating the proposal
completeness subtask from classification, our method disen-
tangles two different objectives and prevents the completeness
objective from confusing the classifier.

We perform statistics about the durations of ground truth
segments on the widely-used SumMe and TVSum bench-
marks. The durations of ground truth segments on both
datasets range from 1 to 44. In our experiments, we set the
tIoU threshold of positive proposals as 0.6. According to
Theorem 1, we know that �1/�2 < ζ 2, when �1 = 1, �2 = 44,
and ζ = 0.6. Therefore, multi-scale proposals should be
specified as Eq. (1). For simplicity, we choose proposals with
scales of 1, 2, 4, 8, 16, and 32. To balance the efficiency and
effectiveness, we merely specify 4 proposals whose durations
are 4, 8, 16, and 32, covering most durations of ground truth
segments.

Theorem 1: Denote [�1, �2] as the range of the segment
distribution and ζ as the threshold of positive segments. The
multi-scale proposals with durations lk , k ∈ {1, . . . K } in an

increasing order are assigned: If �1/�2 ≥ ζ 2, K = 1 and
l ≤ �1/ζ, l ≥ �2 × ζ . Otherwise �1/�2 < ζ 2, and multi-scale
interest proposals are appointed as,{

lk/lk+1 ≥ ζ 2,

lK ≥ ζ × �2, l1 ≤ �1/ζ .
(1)

Proof: For a proposal with the length of lk , k ∈ {1, . . . K },
it can generate positive segments within the range of [lk ×
ζ, lk/ζ ] when the threshold of positive segments is ζ and 0 <
ζ < 1. Therefore, for K interest proposals at each temporal
location, positive segments are produced within the range of

K⋃
k=1

[lk × ζ, lk/ζ ]. In order to produce ground truth segments

with high probabilities, the specified proposals should meet

the constraint that [�1, �2] ∈
K⋃

k=1
[lk × ζ, lk/ζ ]. Generally,

there are two different conditions: 1) [�1, �2] ∈ [lk × ζ, lk/ζ ],
indicating that one proposal (K = 1) is enough to cover the
segment distribution. Formally, the length l of this proposal is
bounded as,

l × ζ ≤ �1, l/ζ ≥ �2 ⇒ l ≤ �1/ζ, l ≥ �2 × ζ ; (2)

2) [�1, �2] /∈ [lk × ζ, lk/ζ ] for any k. Then, we achieve the
following constraint that,

l1 × ζ ≤ �1, lK /ζ ≥ �2 ⇒ l1 ≤ �1/ζ, lK ≥ �2 × ζ, (3)

where l1×ζ and lK /ζ are the minimum and maximum lengths
of positive segments. But, there may be interspaces between
adjacent segments. Hence, we obtain the second constraint as,

lk/ζ ≥ lk+1 × ζ ⇒ lk/ lk+1 ≥ ζ 2 (4)

3) Proposal Classification and Regression: Since the fully-
connected layer requires fixed-length inputs, we exploit a
temporal average pooling layer to pool features of arbitrar-
ily sized proposals, avoiding temporal warping or cropping.
Then, the pooled features are fed into the classification and
regression module shown in Fig. 3. The module is composed
of a shared fully connected layer followed by tanh, dropout
(0.5), and layer-normalization layers and two sibling output
branches. The first branch outputs importance scores of pro-
posals and the second branch outputs the associated center and
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Fig. 3. The detailed components of the classification and regression module.

segment length offsets. We adopt a multi-task loss L to jointly
train our network. Formally, the objective function is written
as,

L( p, p∗, t, t∗) = 1

N

∑
i

Lcls (pi , p∗
i ) + λ

Npos

∑
i

p∗
i Lreg

× (
t i , t∗i

)
, (5)

where the hyper-parameter λ balances the classification loss
and the location regression loss, Npos represents the number
of positive proposals, and N is the number of both positive
and negative proposals. pi (p∗

i ) and t i (t∗i ) are the predicted
(ground truth) importance score and location offset for the i th

proposal, respectively. Lcls represents the cross-entropy loss,
and Lreg is the smoothL1 loss for location offset regression,

Lreg
(
t i , t∗i

) = 1

Q

Q∑
q=1

smoothL1

(
tiq − t∗iq

)
, (6)

where tiq is the qth element of t i . Formally, the smoothL1 loss
is defined as,

smoothL1(x) =
{

0.5x2 if |x | < 1,

|x | − 0.5 otherwise.
(7)

The predicted location offset t i = (δci , δli ) contains center
position and length offsets between generated segments and
pre-defined proposals. The ground truth location offset t∗i =
(δc∗

i , δl∗i ) is computed as follows,

δc∗
i = (

c∗
i − ci

)
/ li , δl∗i = ln

(
l∗i / li

)
, (8)

where c∗
i and l∗i are the center location and the length of the

ground truth segment, and ci and li are the center location and
the length of the i th proposals.

Algorithm 1 summarizes the training procedure, performing
alternate training for M epochs with several video sequences.
For training, we only optimize our network by using the multi-
task loss in Eq. (5). However, for testing, we further conduct
key shot selection to produce the final video summaries after
obtaining the refined proposals.

4) Key Shot Selection: In the testing phase, we generate
the refined segments by using the predicted offsets, which is
analogous to the training stage. However, many segments are
of low confidence and have high overlaps with each other.

Algorithm 1 Training Process of Anchor-Based DSNet

Therefore, we perform the non-maximum suppression (NMS),
a separate post-processing technique, on these refined propos-
als to remove the redundant and low-quality segments [59].

To further generate video summaries, we need to segment
video sequences into shots and estimate the shot-level impor-
tance scores. Firstly, we follow previous works [68], [76] and
apply kernel temporal segmentation (KTS) [43], a fast and
accurate shot detection approach, to segment video sequences
into video shots. Secondly, for testing video sequences,
we employ our training model to predict segment boundaries
and their importance scores. According to the information,
we design a simple strategy to provide the final frame-level
importance scores: assign the maximum value of predicted
segments at the t th temporal location as the t th frame-level
importance score. Once the frame-level importance scores are
obtained, we compute the shot-level importance score yh by
averaging the frame-level importance scores inside the same
shot,

yh = 1

nh

nh∑
r=1

sh,r , (9)

where nh is the length of the hth shot, sh,r is the r th frame-
level importance score in the hth shot. This strategy has been
widely used in video summarization methods for converting
between different formats of ground truth annotations [67].
Finally, for a fair comparison with previous methods, we also
produce the summaries under the constraint that the total
length of selected shots is no more than 15% of the original
video length. Formally, we formalize this problem as,

max
c∑

h=1

uh yh, s.t.
c∑

h=1

uhnh ≤ 15% × T, (10)
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Fig. 4. The architecture of the proposed anchor-free DSNet. We first employ deep convolutional networks and a sequence modeling layer to extract long-range
features. Then, we apply a shared classification and regression module to predict the importance score, center-ness score, and segment boundaries at each
temporal location, respectively. For testing, segments are refined by using the predicted locations, and further filtered with non-maximum suppression. Finally,
the video summary is generated by using a dynamic programming algorithm.

where uh ∈ {0, 1} indicates whether the hth shot is selected in
summaries, c is the number of shots, and T is the length of the
video. Eq. (10) is the classic 0/1 knapsack problem. We apply
a dynamic programming approach to solve this maximization
problem. The final summaries are created by selecting shots
with uh = 1.

Discussions: We did not use the predicted segments to gen-
erate summaries. Since we set the tIoU threshold of positive
proposals as 0.6, there must be many predicted segments of
high overlaps. Direct voting of such relevant segments induces
performance degradation as many similar segments will be
selected. Therefore, we need consider the predicted scores and
segment boundaries together. However, the predicted segment
boundaries from location regression are less accurate than
results produced by KTS, which are taken as ground truth
locations. Hence, we adopt the key shot selection strategy to
create summaries by using the refined shot boundaries and the
predicted shot-level importance scores. The strategy meets the
15% budget constraint.

B. Anchor-Free Video Summarization

While the anchor-based DSNet approach is developed
for temporal interest proposals to address the incorrect
and incomplete segment issue, this method can be further
extended to a more simple and flexible anchor-free frame-
work. In this subsection, we elaborate the anchor-free DSNet
approach.

The anchor-based framework has been applied into object
detection [45], semantic segmentation [42], and action detec-
tion [27], [59]. However, there are several drawbacks for video
summarization by using interest proposals. First, to obtain a
high recall of ground truth segments, our anchor-based DSNet
approach is required to densely sample interest proposals
at each temporal location. But, most proposals are assigned
as negative examples, leading to a severe class imbalance
problem. Second, although multi-scale interest proposals cover
most ground truth segments, the pre-defined nature is not suit-
able to handle complex and dynamic scenes. Third, labeling
the positive and negative samples requires costly tIoU compu-
tation. Finally, the anchor-based approach needs subtle tuning

for hyper-parameters relevant to temporal interest proposals,
including the ratio of positive and negative examples, intervals
of proposals, and the NMS threshold.

Inspired by prevalent spatial anchor-free works [44], [53],
we propose the anchor-free DSNet. Fig. 4 presents the main
architecture of the anchor-free DSNet approach. Specifically,
for each temporal location, we avoid producing multi-scale
temporal proposals for their importance score and location
offset predictions. Instead, we directly predict the impor-
tance score, segment boundaries, and the center-ness score
of each video frame after the long-range feature extraction.
Our anchor-free approach includes feature extraction, segment
prediction, and key shot selection steps. The feature extraction
and key shot selection steps are the same as the anchor-
based approach. Likewise, the annotated frame-level impor-
tance scores are converted to shot-level importance scores.
The ground truth summaries are created via kernel temporal
segmentation and the 0/1 knapsack algorithm by using the
generated segments C = {(ts

o , te
o , co)}nc

1 , where ts
o , te

o , and co

are the starting time, the ending time, and the importance score
of the oth segment Co and nc is the number of segments in
video summaries.

1) Feature Extraction: Given the i th video sequence V i ,
we follow our anchor-based approach and extract representa-
tions {v j }Ti

1 by applying GoogLeNet [52]. Then, we exploit a
self-attention layer to learn long-range representations {w j }Ti

1 .
The final representations {x j }Ti

1 are obtained via the summa-
tion over v j and w j , i.e., x j = v j + w j .

2) Segment Prediction: Unlike our anchor-based approach
that predicts the offsets of pre-defined proposals at each
temporal location, the anchor-free approach aims to directly
learn the segment location and the importance score of each
video frame. Specifically, for training, we view the j th frame
as a positive class when the j th frame is selected in ground
truth summaries. Otherwise, we assign a negative label to this
frame. Since each frame only falls into a certain segment,
the label assignment of video frames is unambiguous. Further-
more, for each positive frame, the anchor-free approach learns
a ground truth 2D vector δ t∗ = (δl∗, δr∗), where δl∗ and δr∗
are the intervals between the current location and left and right
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TABLE I

DESCRIPTIONS OF VIDEO SUMMARIZATION DATASETS USED IN OUR EXPERIMENTS

Algorithm 2 Training Process of Anchor-Free DSNet

boundaries of the associated segment Co, respectively, i.e.,

δl∗ = j − ts
o , δr∗ = te

o − j. (11)

We utilize the exp(·) function to guarantee predicted results
to be positive. Different from the anchor-based approach that
only leverages interest proposals of high tIoU, our anchor-
free approach is capable of optimizing our network by using
all positive locations inside the summary.

We apply the focal loss Lcls [31] for importance classi-
fication, which handles the class imbalance issue by down-
weighting losses for well-classified samples, and we exploit
the tIoU loss Lreg for location regression, which is robust to
temporal interests of varied intervals. Formally, the training
loss is defined as,

L = 1

Npos

∑
j

Lcls (s j , s∗
j ) + λ

Npos

∑
e

Lreg(δ te, δ t∗e), (12)

where s j and s∗
j are the j th predicted and ground truth frame-

level scores, δ te and δ t∗e represent the predicted and ground
truth locations of the eth positive sample. λ balances the
classification and regression losses.

Since many positive temporal locations are close to bound-
aries of the corresponding ground truth segments, our method
will generate many low-quality segments. To address this

issue, we utilize a center-ness constraint to make sure that
the temporal location is close to the center of the predicted
segment. The ground truth center-ness score is defined as,

v∗
e = min(δl∗, δr∗)

max(δl∗, δr∗)
. (13)

We utilize the binary cross entropy (BCE) loss Lcenter with
the balanced weight μ for center-ness scores. Finally, we sum
three losses together. The objective is formally written as,

L∗ = L + μ

Npos

∑
e

Lcenter (ve, v
∗
e ). (14)

Similar to the anchor-based classification and regression
module that is shown in Fig. 3, the anchor-free approach
also contains a shared fully connected layer and two separate
branches for importance classification and location regression.
Besides, the center-ness branch is added for the center-ness
score regression, which has the same structure as the regres-
sion branch expect the output dimension. We also summarize
the training procedure of the anchor-free approach in Algo-
rithm 2. In the training stage, we optimize parameters of the
anchor-free model by using the multi- task loss in Eq. (14).

3) Key Shot Selection: For testing, we first obtain the
importance score s j , the location prediction δl and δr , and the
center-ness score v j of each temporal location by employing
the training model. Then, we compute the starting and ending
times ts

o and te
o of each predicted segment as follows,

ts
o = j − δl, te

o = j + δr, (15)

where j represents the temporal index of the video frame.
and its confidence score is computed as co = s j × v j , which
indicates that a good segment should have a high importance
score and meanwhile the associated location should be at
the central portion of the segment. Due to high overlaps and
low confidence of predicted segments, we filter out redundant
and low-quality segments via the non-maximum suppression
algorithm. Afterwards, we adopt the frame-level importance
score assignment strategy that is the same as the anchor-based
method and we convert frame-level importance scores to shot-
level importance scores. Finally, the 0/1 knapsack algorithm
is applied to select video shots.

IV. EXPERIMENTS

A. Datasets and Protocols

1) Datasets: We evaluated the performance of our anchor-
based and anchor-free approaches on the SumMe [12] dataset
and the TVSum [51] dataset. The SumMe dataset totally
consists of 25 video sequences, covering various genres such
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as holidays, cooking and sports. The TVSum dataset is com-
posed of 50 video sequences downloaded from YouTube with
10 categories, including changing vehicle tire, parade, and dog
show. Both datasets provided multiple user annotations. We
used another two datasets, i.e., OVP [4] and YouTube [4],
to augment the training datasets. The OVP dataset has 50 video
sequences and the YouTube dataset consists of 39 video
sequences excluding the cartoon videos. Specifically, we fol-
lowed previous works and downsampled all videos, originally
captured at 30 fps, to 2 fps to handle temporal redundancy and
reduce computation. Table I showcases detailed descriptions of
four video summarization datasets.

For the proposal classification and location regression,
the ground truth segments are required. However, both SumMe
and TVSum datasets only provide frame-level importance
scores. Hence, we followed conventional methods and applied
KTS to segment videos into serveral shots, where the shot-
level importance scores were computed by Eq. (9). Then,
the knapsack algorithm was applied to produce the key
shot based summaries. For the additional OVP and YouTube
datasets, a collection of keyframes was provided. We first
converted their keyframes to key shot candidates when a
segment contains a keyframe, and then the knapsack algorithm
was applied to meet the constraint of 15% of the original video
length [67].

We exploited three evaluation settings to assess the perfor-
mance of the proposed method, i.e., canonical, augmented,
and transfer settings. For canonical and augmented settings,
we randomly divided the dataset into 5 splits. In the canonical
setting, 80% of the dataset was used for training, and the
remaining 20% was used for evaluation. However, in the
augmented setting, 80% of the dataset augmented with another
three datasets was used for training. In the transfer setting,
three datasets were used for training and the remaining one
dataset was used for evaluation. In experiments, we set the
canonical setting as the default setting. We ran our method five
times for each setting and reported the average performance
of these five runs.

2) Evaluation Metrics: We exploited the Fβ -measure to
evaluate the agreement between the generated summaries and
the human-created summaries. For the i th generated summary
gsi and corresponding annotated summary gt i , the precision
pi and recall ri were computed as,

pi = length
(
gsi ∩ gt i

)
length

(
gsi

) , ri = length
(
gsi ∩ gt i

)
length

(
gt i

) . (16)

Specifically, the Fβ -measure was computed as follows,

Fβ =
(
1 + β2

) × pi × ri(
β2 × pi

) + ri
, (17)

we adopted the harmonic mean F1-measure (β = 1) as
the default F-score result in our experiments. Following the
evaluation protocol of SumMe and TVSum [46], [67], we eval-
uated the quality of a predicted summary by computing the
F-score between the generated summary and its corresponding
summaries created by multiple users for each video.

TABLE II

COMPARISONS OF F -SCORE (%) AND PARAMETERS (MILLION) WITH
STATE-OF-THE-ART VIDEO SUMMARIZATION METHODS ON THE

SUMME AND TVSUM DATASETS UNDER THE CANONICAL SETTING

B. Experiments on Anchor-Based DSNet

In this subsection, we describe implementation details and
present experimental results and analyses of the anchor-based
DSNet approach on the SumMe and TVSum datasets.

1) Implementation Details: For visual representations,
we extracted 1024 dimensional features from outputs of
the pool5 layer in GoogLeNet, pre-trained on ImageNet. In
addition, the anchor-based model contains a multi-head self-
attention layer [54] with 8 heads, a layer normalization,
a fully-connected layer with a dropout layer (0.5) and a tanh
activation function, followed by two output fully-connected
layers. Details of the multi-head self-attention layer can be
found in [54]. The dimensions of hidden states in the self-
attention layer and the first fully-connected layer are 1024 and
128, respectively. For parameters, the value of hyper-parameter
λ in Eq. (5) was set as 1, and the threshold of non-maximum
suppression was set as 0.5. We trained our anchor-based model
over 300 epochs by using Adam optimizer with a base learning
rate of 5×10−5 and a weight decay of 10−5. We conducted our
experiments on a Nvidia GTX 1080Ti GPU and implemented
our method by using PyTorch.

2) Comparison With State-of-the-Art Methods: We com-
pared the anchor-based DSNet approach with state-of-the-
art video summarization methods on SumMe and TVSum.
Comparison methods can be classified into two categories:
1) conventional methods including Video MMR [30], Live-
Light [74], ERSUM [29], MSDS-CC [35], and 2) deep learn-
ing based methods including vsLSTM [67], dppLSTM [67],
SUM-GAN [34], AVS [18], SASUM [55], DR-DSN [76], TS-
STN [16], FCN [47], and VASNet [8].

Table II tabulates experimental results and the parameter
number of different video summarization methods under the
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TABLE III

COMPARISONS OF F -SCORE (%) WITH STATE-OF-THE-ART VIDEO SUM-
MARIZATION METHODS ON THE SUMME AND TVSUM DATASETS

UNDER THE CANONICAL (C), AUGMENTED (A) AND TRANSFER

(T) SETTINGS, RESPECTIVELY

TABLE IV

COMPARISONS OF F -SCORE (%) BY USING DIFFERENT TEMPORAL MOD-
ELING LAYERS ON THE SUMME AND TVSUM DATASETS

canonical setting. We clearly observe that our method yields
the best performance, surpassing current state-of-the-art meth-
ods by at least 0.5% on both the SumMe and TVSum datasets.
Moreover, we observe that our method achieves a good balance
between F-score and parameters. While vsLSTM, dppLSTM,
and DR-DSN contain the least number of parameters by only
employing a bidirectional LSTM, their performance is at least
4% behind that of our method on SumMe and TVSum.

a) Augmentation and transfer experiments: To further
validate the effectiveness of the proposed method, we con-
ducted experiments under the augmented and transfer settings
on the SumMe and TVSum datasets along with the additional
OVP and YouTube datasets. Detailed descriptions about these
two settings are described in the datasets subsection.

Table III presents experimental results of state-of-the-art
methods and our method. We clearly observe that our method
consistently achieves the best performance against the other
methods under the augmented and transfer settings. Given
that the lack of annotated video data may impair the capacity
of supervised methods, we compared different methods under
the augmented setting to alleviate the influence of overfitting.
We see that all methods under this setting achieve a better
performance compared with the performance under the canon-
ical and transfer settings, which indicates that more training
videos are beneficial to performance improvements. We also
conducted experiments by using the more challenging transfer
setting. We see that our method outperforms the previous state-
of-the-art methods, proving the effectiveness of the proposed
method across videos from different datasets.

TABLE V

COMPARISONS OF F -SCORE (%) WITH (✓) OR WITHOUT (✗) TEMPORAL
AVERAGE POOLING LAYER ON THE SUMME AND TVSUM DATASETS

Fig. 5. The recall curve for selected proposals on the TVSum dataset.

b) Evaluation of long-range features: To analyze the
effect of long-range features with different feature extraction
layers, we replaced the default self-attention layer with a
LSTM layer, a bidirectional LSTM layer, or a graph convo-
lutional layer [24], respectively. Following the self-attention
layer setting, we set the dimension of outputs in different
layers as 1024. Since we concatenated the hidden states of
both directions in Bi-LSTM, its hidden dimension was set as
512.

Table IV tabulates the performance of the self-attention
layer with different feature extraction layers on the SumMe
and TVSum datasets. We clearly observe that our models with
different feature extraction layers achieve very competitive
results against state-of-the-art methods.

c) Evaluation of temporal pooling layers: Since we
applied a temporal average pooling layer on proposal fea-
tures of arbitrary length, we investigated the influence of
the temporal average pooling layer in the classification and
regression module. Table V shows experimental results of our
method with or without the pooling layer on the SumMe and
TVSum datasets. We see that the temporal pooling mechanism
improves the performance on both datasets especially under
the transfer setting, and it can enhance the robustness of
our model, due to the effective utilization of temporal local
information.

d) NMS threshold study: We conducted ablation exper-
iments on the SumMe and TVSum datasets to analyze the
effect of the NMS threshold. Since a high threshold may filter
out high-quality segments while a low threshold may introduce
low-quality segments, the NMS threshold significantly affects
the performance of our method. Fig. 6 and Fig. 7 present
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Fig. 6. Parameter analysis of the NMS threshold on the SumMe dataset in
the anchor-based approach. We set the default value as 0.5.

Fig. 7. Parameter analysis of the NMS threshold on the TVSum dataset in
the anchor-based approach. We set the default value as 0.5.

experimental results of the anchor-based method with different
NMS thresholds. We observe that the performance of our
method on the TVSum dataset becomes stable with a threshold
value around 0.5. To simultaneously guarantee a high recall
and a high accuracy, we both set the NMS thresholds on the
SumMe and TVSum datasets as 0.5.

e) Parameter analysis: We also analyzed the effect of
the parameter λ in Eq. (5), which trades off the classification
and regression losses. It is noteworthy that if the parameter
λ = 0, the regression item is removed from the loss function.
Fig. 8 presents experimental results on the TVSum dataset
with different λ. We see that our method obtains an inferior
performance when λ = 0, which suggests that the regression
item is beneficial to improve the summary performance by
providing refined proposals. We set the value of λ as 1.0 for
equal importance of the classification and regression branches.

f) Recall analysis: To guarantee a high recall of ground
truth segments, we depicted the recall curve about refined
proposals. Fig. 5 presents the recall results with different
number of proposals. Table I shows that videos in the TVSum
dataset consist of at less 83 seconds and 166 frames. Each

Fig. 8. Parameter analysis of λ on the TVSum dataset in the anchor-based
approach. We set the default value as 1.00.

TABLE VI

COMPARISONS OF THE F -SCORE (%) WITH STATE-OF-THE-ART VIDEO

SUMMARIZATION METHODS ON THE SUMME AND TVSUM DATASETS
UNDER THE CANONICAL (C), AUGMENTED (A) AND TRANSFER

(T) SETTINGS

temporal location generates 4 proposals and totally 664 pro-
posals. Therefore, our method can achieve a recall over 95%
of ground truth segments with different long-range temporal
layers.

C. Experiments on Anchor-Free DSNet

1) Implementation Details: We extracted 1024 dimensional
features from GoogLeNet and the number of heads in self-
attention layer was set as 8. In Eq. (14), the balance parameters
λ and μ were set as 1. For the focal loss, α and γ were set as
0.25 and 2, respectively. Moreover, we trained our anchor-free
model over 300 epochs by using the Adam optimizer with a
base learning rate of 5×10−5 and a weight decay of 1×10−5.
The NMS threshold was set as 0.4.

2) Comparison With State-of-the-Art Methods: To vali-
date the effectiveness of the proposed anchor-free method,
we compared our method with state-of-the-art methods under
three dataset settings including canonical, augmented and
transfer settings. Table VI presents experimental results by
using different video summarization methods on the SumMe
and TVSum datasets. We clearly observe that our anchor-
free method outperforms the other state-of-the-art methods
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TABLE VII

EFFECT OF THE CENTER-NESS LOSS AND EXP EMBEDDING ON SUMME
AND TVSUM WITH F -SCORE (F), PRECISION (P) AND RECALL (R)

TABLE VIII

EFFECT OF THE DIFFERENT LOSS FUNCTIONS ON SUMME AND TVSUM

INCLUDING CROSS-ENTROPY (CROSS-ENT.), FOCAL, TIOU, AND

SMOOTHL1 LOSSES

on both datasets except DR-DSN on the TVSum dataset
under the transfer setting. Compared with our anchor-based
method in Table III, our anchor-free method obtains a better
performance on SumMe. However, the F-score of the anchor-
based method on TVSum is higher than that of the anchor-
free method. The reason may be that durations of ground truth
segments on TVSum tend to be longer than those on SumMe,
and it is much more easier for the anchor-based method to deal
with long segments with pre-defined multi-scale proposals.

a) Evaluation of the center-ness loss and exp embedding:
To analyze the effect of the center-ness branch and exp
embedding in the regression branch, we conducted experi-
ments without (w/o) the center-ness loss or exp(·) embedding.
Table VII shows experimental results including F-score, pre-
cision, and recall by using these two settings. We observe
that without the center-ness branch, our anchor-free approach
induces performance degradation on the SumMe and TVSum
datasets. A comparable performance is observed without the
exp mapping that promises outputs in the regression branch to
be positive.

b) Comparisons of the classification and regression
losses: The loss functions play a crucial role in training
our model and we compared the focal loss with the cross-
entropy loss in the classification branch and the tIou loss
with the smoothL1 loss in the regression branch. Table VIII
tabulates experimental results by using different loss functions.
We observe that our method with the focal and tIoU losses
outperforms the other alternative settings on both datasets.
A possible reason is that the focal loss addresses the class
imbalance issue by automatically decreasing the contributions
of well-classified examples compared with the cross-entropy
loss, and the tIoU loss is more robust than the smoothL1 loss.

c) Evaluation of long-range features: Similar to the
anchor-based approach, we investigate the effect of long-range
features by using different feature extraction layers. Table IX
presents F-score, precision, and recall results with different

TABLE IX

EFFECT OF LONG-RANGE FEATURES BY USING DIFFERENT TEMPORAL
MODELING LAYERS ON THE SUMME AND TVSUM DATASETS

Fig. 9. F-score results of different λ and μ values on the SumMe and
TVSum datasets in the anchor-free approach.

long-range features. We observe that our anchor-free method
with the attention layer obtains the best performance against
the other temporal layers on both datasets.

d) Parameter analysis: We also provided comparisons
by using different parameter values to evaluate parameter
sensitivity. Note that we adopted a simple grid search strategy
to tune parameters λ and μ in the range of [0.25, 2.00] with an
interval of 0.25. The grid search strategy uniformly samples
parameter λ and μ values within the specified value range.
Therefore, the value sets of parameters λ and μ are {0.25,
0.5, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00} and {0.25, 0.5, 0.75,
1.00, 1.25, 1.50, 1.75, 2.00}, respectively. Trials are formed
by assembling every possible combination of these values and
thus there are 64 trials in total. Fig. 9 visualizes experimental
results with different λ and μ on the SumMe (Fig. 9(a)) and
TVSum (Fig. 9(b)) datasets. We observe that our method is
not sensitive to parameters λ and μ within the range. For
simplicity, we both set λ and μ values as 1.00 in experiments.

e) NMS threshold study: Since NMS filters out low-
quality and redundant segments and is very important to final
results, we further conducted analyses of the NMS threshold
on the SumMe and TVSum datasets. Fig. 11 shows exper-
imental results by using different NMS thresholds. We see
that when the NMS threshold is 0.4, our anchor-free method
achieves the best performance. Therefore, we set the default
value of the NMS threshold as 0.4 in our experiments.

f) Effect of temporal continuity and integrity constraints:
We conducted experiments to demonstrate the effectiveness of
temporal continuity and integrity constraints. For the baseline,
we removed the interest proposal formulation and only applied
a self-attention layer to predict the importance scores. Table X
presents experimental results by using the self-attention layer
on SumMe and TVSum. Specifically, Anchor-basedλ=0 indi-
cates that the parameter λ in Eq. (5) is set as 0 and the
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Fig. 10. Qualitative results of different video summarization methods, including the ground truth, our anchor-based method, our anchor-free method, DR-
DSN [76], dppLSTM [67], and VASNet [8]. The x-axis represents the frame index and the line segments denote the selected segments. Frames are uniformly
sampled and shown below the summary results and the selected frames are highlighted via red boundary boxes.

Fig. 11. Parameter analysis of the NMS threshold in the anchor-free
approach.

anchor-based method produces interest proposals but does not
refine these proposals. Anchor-freeλ=0,μ=0 adopts the same
setting without refined proposals. We observe that only pro-
ducing interest proposals without refining these proposals, our
Anchor-basedλ=0 and Anchor-freeλ=0,μ=0 approaches provide
the inferior performance on SumMe. Moreover, our anchor-
based and anchor-free methods with temporal continuity and
integrity constraints achieve the superior performance, which

TABLE X

COMPARISONS OF DIFFERENT SETTINGS WITH (✓) OR WITHOUT (✗)
THE INTEREST PROPOSALS (I) AND REFINED PROPOSALS (R) CON-

STRAINTS BY USING THE SELF-ATTENTION LAYER

are 1.4% and 2.4% relative improvements on SumMe, 2.5%
and 2.3% relative improvements on TVSum over the baseline.

g) Diversity analysis: Diversity is a key property of
video summarizes. We followed experimental settings in [76],
and used its diversity metric to evaluate the diversity of
generated summaries on the SumMe and TVSum datasets.
A more diverse summary corresponds to a higher diversity
score. Table XI shows the diversity scores by using different
methods. Both dppLSTM and DR-DSN exploited the diversity
constraints. We observe that our anchor-based and anchor-free
approaches obtain higher scores compared with dppLSTM and
DR-DSN.

h) Runtime analysis: Compared with the anchor-based
method, our anchor-free method avoids generating interest
proposals and saves more running time. To validate the effi-
ciency of our anchor-based method, we recorded the inference
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TABLE XI

THE DIVERSITY SCORES OF GENERATED SUMMARIES ON THE SUMME
AND TVSUM DATASETS

TABLE XII

THE AVERAGE INFERENCE TIME (ms) AND AVERAGE FRAMES (×15)
FOR PER VIDEO BY USING OUR ANCHOR-BASED AND ANCHOR-FREE

METHODS

times of our anchor-based and anchor-free methods after
feature extraction by using GoogLeNet. Table XII presents the
average inference time on the SumMe and TVSum datasets.
We observe that our anchor-free method is more efficient than
our anchor-based method, speeding up the inference stage
more than 2.8× on SumMe and 4.6× on TVSum.

i) Qualitative results: We also provided qualitative results
to intuitively evaluate the performance of different video sum-
marization methods on the 25th video of the SumMe dataset
and on the 24th and 42nd videos of the TVSum dataset. Fig. 10
visualizes the example summaries generated by different video
summarization methods as well as human-created summaries.
The first video (Fig. 10(a)) is about playing a ball, the second
video (Fig. 10(b)) is related to parkour, and the third video
(Fig. 10(c)) shows an interview with a motorcyclist and the
riding show. We clearly observe that both the anchor-based and
anchor-free methods produce segments that have high over-
laps with ground truth segments. Moreover, the anchor-free
approach compares favorably with the anchor-based approach
due to the interest proposal formulation. Besides, although the
video on SumMe has few representative segments and many
segments are chosen from videos on TVSum, our anchor-based
and anchor-free methods avoid selecting unrepresentative seg-
ments on SumMe and excluding key segments on TVSum. The
generated summaries are perfectly consistent with the ground
truth summaries. The qualitative results intuitively demonstrate
the effectiveness of the proposed methods.

D. Analysis

According to the above experimental results, several key
observations are summarized:

1) Different from existing supervised video summarization
methods without temporal continuity and integrity con-
straints, the anchor-based DSNet regards video summa-
rization as an interest detection problem, and achieves
very promising performance on two widely-used datasets.

2) The anchor-based DSNet approach conducts dense sam-
pling of multi-scale interest proposals to accommodate

various durations of segments and exploits negative sam-
ples to deal with incorrect and incomplete segments.

3) Based on the anchor-based DSNet, we further pro-
pose the anchor-free DSNet, which eliminates the pre-
defined interest proposals in the anchor-based DSNet by
directly learning importance scores, segment locations,
and center-ness scores.

4) Moreover, the anchor-free approach can be viewed as
a special anchor-based approach. Differently, there is
only one single ’anchor’ at each temporal location in
the anchor-free approach that is of flexible length and is
unsymmetrical, meaning that the left and right boundaries
of an ’anchor’ are unfixed and can dynamically change.
Obviously, we need another a center-ness constraint to
restrict the flexibility of these ’anchors’.

5) Our anchor-free DSNet achieves comparable performance
against the anchor-based DSNet due to the similar interest
proposal formulation.

V. CONCLUSION

In this paper, we have proposed a Detect-to-Summarize net-
work framework for video summarization, including anchor-
based and anchor-free approaches. Unlike existing supervised
methods which only learn the importance score of each
frame, our anchor-based DSNet approach formulates video
summarization as an interest detection problem and simulta-
neously learns importance scores and location offsets of gen-
erated interest proposals, handling incorrect and incomplete
segments. To eliminate the drawbacks of interest proposals,
we further propose the anchor-free DSNet approach to directly
predict the importance scores and segment boundaries. The
proposed anchor-based and anchor-free DSNet approaches
outperform most state-of-the-art supervised methods on the
widely-used SumMe and TVSum datasets. In the future,
we will attempt to incorporate key shot selection into a unified
framework.
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