
In-situ Programmable Switching using rP4:
Towards Runtime Data Plane Programmability

Yong Feng
Tsinghua University

Haoyu Song
Futurewei Technologies

Jiahao Li
Tsinghua University

Zhikang Chen
Tsinghua University

Wenquan Xu
Tsinghua University

Bin Liu∗
Tsinghua University

ABSTRACT
The existing chip architecture and programming language
are incapable of supporting in-service updates by loading or
offloading on-demand protocols and functions at runtime.
We examine the fundamental reasons for the inflexibility
and design a new In-situ Programmable Switch Architecture
(IPSA) as a fix. We further design rP4, a P4 extension, for
programming IPSA-based devices. To manifest the in-situ
programming feasibility, we develop an rP4 compiler and
demonstrate several use cases on both a software switch,
ipbm, and an FPGA-based prototype. Our preliminary ex-
periments and analysis show that, compared to PISA, IPSA
provides higher flexibility in enabling runtime functional
update with limited performance and gate-count penalty.
The in-situ programming capability enabled by IPSA and rP4
opens a promising design space for programmable networks.

ACM Reference Format:
Yong Feng, Haoyu Song, Jiahao Li, Zhikang Chen, Wenquan Xu,
and Bin Liu. 2021. In-situ Programmable Switching using rP4: To-
wards Runtime Data Plane Programmability. In Proceedings of The
20th ACM Workshop on Hot Topics in Networks (HotNets’21). ACM,
NewYork, NY, USA, 8 pages. https://doi.org/10.1145/3484266.3487367

1 INTRODUCTION
High-performance networking devices are usually built with
hardware centered on a forwarding chipset [6, 7, 19, 38].
Applications have diverse functional requirements and the

∗The authors from Tsinghua University are supported by NSFC grant
(62032013, 61872213, 61432009), NSFC-RGC (62061160489). Bin Liu
(liub@tsinghua.edu.cn) is the corresponding author.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HotNets’21, November 10-12, 2021, Virtual Event, UK
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9087-3/21/11. . . $15.00
https://doi.org/10.1145/3484266.3487367

demand for higher throughput is relentless. It becomes in-
creasingly uneconomical or even infeasible to integrate all
needed functionalities in one chip at design time.
The reconfigurable chips (e.g., FPGA and Network Pro-

cessor) were the earlier attempts to address this challenge.
In recent years, data-plane programmability was pushed
to a new height: (1) the packet processing flow was ab-
stracted as a generic match-action pipeline (i.e., PISA [27]
based on RMT [5]) and the compliant programmable ASIC
was built [11]; (2) a high-level domain-specific language
P4 [4] was developed as the chief programming language
for such an architecture. The flexibility has triggered numer-
ous innovations in in-network computing [21, 25, 41] and
programmable network visibility [15, 33, 42].

However, a fundamental issue remains. Such programma-
bility is limited to the design time. The packet processing
pipeline, once installed, cannot be changed during the run-
time. Any functional change, no matter how minor it is,
requires updating and recompiling the source code, swap-
ping the new "binary" in, and repopulating all the tables,
which inevitably introduce delay and service interruption.

We argue the capability of in-service function update, with
the properties as follows, is essential: only the incremental
part is patched into the existing system without full design
recompiling and reloading; the update process has near-zero
impact on the network service and incurs a minor delay,
allowing realtime interactive control loops.

The need for such a capability is evidenced by the follow-
ing applications which are by no means exhaustive: (1) Dy-
namic network visibility. Temporary and customized net-
work telemetry and measurement functions are either un-
foreseeable at design time or too resource-consuming to
keep permanent [16, 29–32, 42, 44]; (2) Trial on new proto-
cols/algorithms. Live trials in production networks can be
conducted with reliable failback procedure, and stable fea-
tures can be made permanent without a network overhaul;
(3) Transitory in-network computing. The pluggable functions
are temporally enabled at runtime to boost application per-
formance [20, 21, 35]; (4) Table refactoring and repurposing.
Limited memory adapts to the changing traffic pattern and
network scale, and new functions need to initiate new tables.

69

https://doi.org/10.1145/3484266.3487367
https://doi.org/10.1145/3484266.3487367

HotNets’21, November 10-12, 2021, Virtual Event, UK Yong Feng, Haoyu Song, Jiahao Li, et al.

TSP TSP TSP TSP TSP TSP TSP

r s t

Crossbar Switch

TM/TSP I/O Selector

TCAM Table

Pool

TCAM Table

Pool

TCAM Table

Pool

TCAM Table

Pool

TCAM Table

Pool

SRAM Table

Pool

TM

In Out

p
a

rse
r

e
x

e
cu

to
r

TSP

m
a

tch
e

r
m

a
tch

e
r

p
a

rse
r

e
x

e
cu

to
r

TSP

m
a

tch
e

r

Figure 1: Overview of IPSA architecture.

The capability will become more crucial on the evolution
course of autonomous networks, in which networks become
more dynamic and new services emerge rapidly. Several
attempts have been made from different angles to achieve
higher flexibility for data-plane programmability [18, 24, 28,
45, 47]. However, none of them can realize the desired in-situ
programmability in hardware. To this end, we reason a new
chip architecture other than PISA is needed, as well as the
corresponding programming model. Specifically, we make
the following contributions: (1) a new In-situ Programmable
Switch Architecture (IPSA) which provides enough flexibility
to meet the in-situ programming requirement (Sec. 2); (2) rP4,
a P4 extension, and the design flow and compilers for IPSA-
based data-plane device programming (Sec. 3); (3) a software
switch behavioral model, ipbm, and an FPGA-based IPSA pro-
totype to demonstrate the complete rP4 programming flow
with real use cases (Sec. 4). Sec. 5 provides preliminary eval-
uations on IPSA/rP4 performance and cost. Sec. 6 discusses
the related work and Sec. 7 concludes the paper.

2 IPSA OVERVIEW
The overall architecture of IPSA, which contains four major
components, is shown in Fig.1.

2.1 Distributed On-demand Parsing
PISA [27] features a standalone front-end parser responsible
for parsing all the headers used by the packet processing
pipeline. As a result, packet parsing is entangled with packet
processing, making incremental changes difficult. A modular
design favors coupling packet processingwith corresponding
header parsing. IPSA eliminates the front-end parser and
distributes the parsing function to each pipeline stage when
needed. The just-in-time parsing ensures the self-sufficiency
of each pipeline stage. The parsed headers are passed to later
pipeline stages to avoid unnecessary re-parsing. A deparser
is not necessary at egress since the complete packet headers
are maintained throughout the pipeline.

2.2 Templated Stage Processor
In PISA, the programming is not stage-oriented. A user, only
having access to high-level programs, has little control over
the actual physical-stage mapping. In contrast, the IPSA
pipeline stages are loosely coupled and individually pro-
grammable. Specifically, each processor appears to be a tem-
plated container. Programming a Templated Stage Processor
(TSP) simply means downloading the template parameters,
such as header field indicators, match type, table pointer, and
action primitives, to it. This way, we can easily modify the
function of each TSP at runtime.

Due to the distributed parsing, each pipeline stage proces-
sor now contains three sub-modules: parser, matcher, and ex-
ecutor. The matcher and executor conduct the similar match-
action function as in PISA. The three sub-modules can also
be pipelined for higher throughput.

2.3 Elastic Pipeline
PISA-based chips contain a hardware pipeline with a fixed
number of stages for ingress and egress, on which the actual
packet processing pipeline is mapped in order. The draw-
back is twofold: non-functional stages remain in the pipeline,
costing extra latency and power, and some designs fail to fit
due to the lack of stages in either ingress or egress.
Since migrating the logic from one TSP to another is as

simple as writing the template into the target TSP in a few
clock cycles, IPSA adopts an elastic pipeline structure shown
in Fig. 1 as a tradeoff between flexibility and scalability.

While all the TSPs are still chained together, a number of
TSPs in the middle have another side interface to a selector
which selects a TSP on the left as the TM input, and a TSP
on the right as the TM output. Thus, the TM separates the
ingress and egress; a middle TSP can belong to either ingress
or egress, or be bypassed, through selector configuration.
The bypassed TSPs can be kept in low power state.

The elastic pipeline can adapt to various designs with
different ingress and egress stage requirements and support
incremental updates. The ingress (egress) stages are mapped
to the leftmost (rightmost) TSPs. For any stage insertion
or deletion, the pipeline is drained through back pressure
first, the templates of the affected TSPs are rewritten, and
meanwhile, the selector is reconfigured if needed.

2.4 Disaggregated Memory Pool
PISA prorates memory (TCAM and SRAM) among all the
stage processors. The table expansion is achieved by com-
bining the associated memory of consecutive stages, which
reduces the number of effective pipeline stages. More im-
portantly, the integrated memory makes incremental update
difficult. Once a logic stage needs to be relocated, the table
migration can be prohibitively expensive.

70

In-situ Programmable Switching using rP4 HotNets’21, November 10-12, 2021, Virtual Event, UK

As a remedy, IPSA disaggregates the memory from pro-
cessors to a shared memory pool as in dRMT [9]. A crossbar
switch is statically configured for each design to provide
interconnection between TSPs and memory blocks. Updates
on either TSPs or tables may require a reconfiguration of
the crossbar. To cope with the scalability, different crossbar
types [9] can be used as a tradeoff between flexibility and
resource consumption. For example, a cluster of TSPs may
only have a crossbar connection with a cluster of memory
blocks. In this case, if a logical pipeline stage is moved to a
TSP in another cluster, the associated tables also need to be
migrated to another cluster.
An SRAM table can be mapped to some non-adjacent

memory blocks. The TCAM table virtualization technique is
similar to that in RMT [5, 9]. Given the memory block size of
𝑤 × 𝑑 , a table of size𝑊 × 𝐷 would require ⌈𝑊 /𝑤⌉ × ⌈𝐷/𝑑⌉
memory blocks. Once deployed, network operators are only
aware of the logical tables, and use the APIs provided by the
compiler to access the tables at runtime. If a logical stage is
deleted, the associated memory blocks are also recycled.

3 PROGRAMMINGWITH rP4
3.1 rP4 Language
The in-situ programming on IPSA-based devices is stage-
oriented. The packet processing pipeline consists of stages
with each performing some parse-match-action triad. The
incremental parts are inserted into the pipeline as new stages.

To this end, we design a new P4 language extension, rP4,
dedicated to programming IPSA-based devices. The reason
is multifold: P4 is familiar and supported by a mature com-
munity; we can reuse most of the existing language features;
potentially we can mix rP4 code to P4 program for co-design
optimization. In rP4, each function contains one or more
stages, and each stage includes a parser, amatcher, and an ex-
ecutor module. The table information can be extracted from
the matcher. The rP4 EBNF is shown in Fig. 2.
rP4 is a lower-level language compared to P4, but rP4

code is still easy to write and understand. The rP4 back-end
compiler will map each stage to a TSP. One TSP can host
multiple independent stages after compiling. In contrast, P4
allows using the annotation “@pragma stage i" to designate
some processing logic to a specific physical stage. This hard-
mapping requires low-level chip knowledge and meticulous
design to avoid compiling errors.

3.2 rP4 Design Flow
The complete rP4 design flow is illustrated in Fig.3.
Flow for Base Design. Although the entire packet process-
ing flow can be directly written in rP4, we prefer to use P4
for the base design because P4 code is easier to write and
many proven designs written in P4 exist. More important,

<rp4_def> ::= <header_defs> <strcut_def> <header_vector_def>

 <action_def> <table_def> <ingress_pipe>

 <egress_pipe> <user_funcs>

<header_defs> ::= 'headers' '{' {<header_def>} '}'

<header_def> ::= 'header' <header_name> '{'

 {<field_def>} <parser_def>

 '}'

<parser_def> ::= 'implicit' 'parser' '('

 {<header_field_name>} ')' '{'

 {<header_tag> ':' <header_name>} '}'

<struct_def> ::= 'structs' '{' {<struct_dec>} '}'

<struct_dec> ::= 'struct' <struct_name> '{'

 {<member_type> <member_name>}

 '}' [<alias_name>';']

<ingress_pipe> ::= 'control' 'rP4_Ingress' '{' {<stage_def>} '}'

<stage_def> ::= 'stage' <stage_name> '{'

 <parser_mod>

 <matcher_mod>

 <executor_mod> '}'

<parser_mod> ::= 'parser' '{' {<instance_name>';'} '}'

<matcher_mod> ::= 'matcher' '{' {<table_name>';'} '}'

<executor_mod> ::= 'executor' '{'

{<switch_tag>':'<switch_actions>';'}'}'

<user_funcs> ::= 'user_funcs''{' {<func_definition>}

 'ingress_entry' ':' <stage_name> ';'

 'egress_entry' ':' <stage_name> '}'

<func_definition> ::= 'func' <func_name> '{' {<stage_name>} '}'

Figure 2: rP4 EBNF. Other light coloured non-
terminals common with P4 are omitted.

rP4 Compiler

rP4 front-

end

rP4 back-

end
.p4 .rp4

.json

IPSA Data Plane

IPSA Control Plane

In-situ

programming

cmd + .rp4

Runtime

control

Driver

API

Mapper

P4 front-

end
IR

Figure 3: The rP4 design flow.

a design in P4 can be compiled and mapped into both PISA
and IPSA-based devices, albeit the former does not support
runtime incremental updates.

We develop an rP4 front-end compiler, rp4fc, to transform
P4 code into rP4 code. Specifically, rp4fc takes the HLIR,
the target-independent output of p4c, as input, and outputs
the semantically equivalent rP4 code. rp4fc also outputs the
APIs for controller to access the tables at runtime.

To generate the final TSP mapping, we develop an rP4
back-end compiler, rp4bc. It takes rP4 code as input, analyzes
the dependency of different logical stages, optimizes the
predicates to merge some independent stages into a single
TSP, allocates tables, and computes the best stage mapping
layout. The output of rp4bc is the TSP template parameters
in JSON format, used for data-plane device configuration.

71

HotNets’21, November 10-12, 2021, Virtual Event, UK Yong Feng, Haoyu Song, Jiahao Li, et al.

C1M C2 C3 Legend

m

mm

h

h

h

h

A: port_map

B: ig_domain_bind

C: routable

H: nexthop

physical stage

deleted stage

flow_probeP

end_transitN end_transitN

local_idM local_idM

ecmp_ipv6L

ecmp_ipv4K

m missm miss

h hith hit

I: l2_l3_rewrite J: retrieve_eg_ifI: l2_l3_rewrite J: retrieve_eg_if

E: ipv4_lpm G: ipv6_lpmE: ipv4_lpm G: ipv6_lpm

D: ipv4 F: ipv6D: ipv4 F: ipv6

AA

BB

CC

E FD GE FD G

HH

II

JJ JJ

II

E FD GE FD GE FD G

CC

AA AA

BB

CC

M NM N

E FD GE FD G

HH

II

JJ JJ

II

HH

PP

E FD GE FD G

CC

BB

AA

BBB

H K LH K L

Figure 4: The packet processing pipeline and the TSP mapping for the use cases.

Flow for Incremental Updates. In-situ programming also
takes advantages of rp4bc. With the help of the rP4 base
design, users gain insight into the pipeline and decide the
location for updates. To insert a new function, we write the
rP4 code snippet. We then feed the commands (stipulating
the operation and location) plus the rP4 code to rp4bc, which
generates two outputs. The first output is the updated base
design, and the second output is the new TSP templates and
switch configuration. We use another command and an rP4
function name as parameters for function deletion. Similarly,
the base design is updated and new data-plane templates and
configuration are generated.
Algorithms in rP4 Compiler. The rP4 compiler involves
several algorithms: (1) for mapping tables in the memory
pool, we formulate it as a set packing problem, which is NP-
complete. We embed a dedicated integer programming solver
YALMIP [26] into rp4bc to get a heuristic solution; (2) for
runtime function update, we design an incremental layout
optimization algorithm, aiming for higher resource utiliza-
tion and lower processing latency. In the algorithm, there
is a trade-off between dynamic programming and greedy
algorithm in terms of the function placement time and the
degree of optimization.

4 IMPLEMENTATION AND EVALUATION
4.1 IPSA Device Prototypes
Software Switch: We implement a behavioral model, ipbm,
on Ubuntu 20.04 LTS as a reference software switch con-
forming to the IPSA architecture. ipbm takes 7,291 lines of
C++ code. Users can use rP4 design flow to program it. ipbm
consists of four modules. The Communication Module (CM)
bypasses the OS protocol stack to support direct packet I/O.
The Pipeline Module (PM) realizes the TSPs. The Control
Channel Module (CCM) bridges the data plane with the con-
troller for runtime configuration. The Storage Module (SM)
realizes the disaggregated memory pool.
Hardware Switch: We also build a hardware prototype on
a Xilinx Alveo U280 DC accelerator card. The FPGA adopts
the Xilinx 16nm UltraScale+ architecture and offers 8GB of

HBM2 memory with 460G/s bandwidth [40]. We implement
both IPSA (14,894 lines of Verilog/VHDL code) and PISA
(18,043 lines) for comparison. Each prototype includes eight
physical stage processors. The TM is omitted for simplicity.
Controller: The controller is used for runtime configura-
tion and in-situ programming. We use C++ to implement
a simple command-line interface, allowing users to load or
offload on-demand protocols and functions at runtime. rp4c
is implemented with 3,772 lines of C++ code.

4.2 Tested Use Cases
The base design we use supports simple L2/L3 forwarding
which requires seven TSPs to map all the function stages
(shown in Fig. 4): (1) get interface index via port mapping
table (A), (2) bind the bridge and the Virtual Routing Forward-
ing (VRF) table (B), (3) determine L2 or L3 forwarding (C),
(4) look up IPv4/v6 FIB (D, E, F, G), (5) bind the egress bridge
and set DMAC via the nexthop table (H), (6) process IPv4/v6
header and set SMAC (I), and (7) retrieve egress interface
via DMAC table (J). To showcase the in-situ programming
capability, we select three representative applications.
C1: Equal-CostMulti-Path Routing (ECMP).Whenmul-
tiple optimal paths to the same destination exist, ECMP [22,
34] can be used for load balancing. The function takes effect
after the FIB lookup. A link is chosen based on the next-hop
and flow ID hashing. ECMP does not introduce new proto-
cols, but two new tables and processing logic. The rP4 code
for the ECMP function is shown in Fig. 5(a). ECMP works for
both IPv4 (K) and IPv6 (L). Since they are independent, only
one stage is needed for the function. The ECMP function
also covers and therefore replaces H.

To insert the ECMP function into the original switch, we
conduct the following steps: (1) write the function code, (2)
write a script (shown in Fig. 5(b)) to define the location of
the function in the pipeline and start the compiling process,
and (3) issue another command to configure the device with
the generated templates and configuration.
C2: IPv6 Segment Routing (SRv6). As a source-routing
technique [1], SRv6 [10] is gaining attraction, which uses

72

In-situ Programmable Switching using rP4 HotNets’21, November 10-12, 2021, Virtual Event, UK

an IPv6 extension header (i.e., SRH) to carry the forward-
ing path [13, 14]. The SRv6 function requires two tables,
local_sid and end_transit, for SR end-point and transit-
node processing, respectively.

SRv6 defines a new protocol header, SRH. In this case, the
script for loading the function also needs to link the new
header into the original header list, as shown in Fig. 5(c).
Since the switch should still support pure L3 forwarding,
the linkage between routable and ipvx is reserved. After
rp4bc compiling and download command issuing, the target
is renewed with SRv6 support.
C3: Event-triggered Flow Probe. At runtime, a user in-
stalls a custom probe that counts the packets for a particular
IPv4 flow. Once the counter exceeds a threshold, the flow
packets are marked for further processing (e.g., the controller
may apply some ACL or QoS rules to the flow). In this case,
no new header is involved and a new flow table with the
search key of {SIP, DIP} is needed. We omit the programming
and compiling details due to space limit, but show the TSP
mapping result in Fig. 4.
Due to space limitations, we do not show use cases for

function/protocol removal and update. Such changes usually
require less compiling time and data-plane modifications.

4.3 Performance Evaluation
In addition to the rP4 design flow, we also implement the
use cases in P4 design flow for comparison. Each time the
updated source code is compiled by p4c and a PISA-based
back-end compiler, and the FPGA prototype is loaded with
the updated design.

Use Case C1 C2 C3
time (ms) 𝑡𝐶 𝑡𝐿 𝑡𝐶 𝑡𝐿 𝑡𝐶 𝑡𝐿
PISA 3,126 917 6,061 1,297 3,373 1,048
IPSA 73 22 187 30 98 25
ratio 2.34% 2.40% 3.09% 2.31% 2.91% 2.39%
Total 2.35% 2.94% 2.78%
bmv2 477 113 935 159 495 129
ipbm 29 13 48 25 31 19
ratio 6.08% 11.50% 5.13% 15.72% 6.26% 14.73%
Total 7.12% 6.67% 8.01%

Table 1: Compiling and loading time comparison.
The update performance (compiling time 𝑡𝐶 and loading

time 𝑡𝐿) for each case is shown in Table 1. Similar comparison
between bmv2 [2] and ipbm is also included. In cases the in-
cremental updates can be pre-compiled, 𝑡𝐿 will dominate the
performance. The real pipeline stall time required is shorter
than 𝑡𝐿 since 𝑡𝐿 contains the communication time with the
device. Note that, not reflected in this evaluation, the P4 de-
sign flow also needs to populate all the tables after loading
the design, while the rP4 design flow only needs to do that
for the new tables, making the latter more advantageous.

table ecmp_ipv4 {

key = {

meta.nexthop: hash;

ipv4.dst_addr: hash;// similar with P4's selector

}

size = 4096;

}

table ecmp_ipv6 { }

// parse ipv4 or ipv6, match table

stage ecmp { /*** parser-matcher-executor ***/

parser { ipv4, ipv6 };

matcher {

if(ipv4.isValid()) ecmp_ipv4.apply();

else if(ipv6.isValid()) ecmp_ipv6.apply();

else;

};

executor {

1: set_bd_dmac;

default: NoAction;

}

}

// set egress bridge and dmac

action set_bd_dmac(bit<16> bd, bit<48> dmac) {

meta.bd = bd;

ethernet.dst_addr = dmac;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

(a) The rP4 code for the ECMP function.

load ecmp.rp4 --func_name ecmp

add_link ipv4 ecmp

add_link ipv4_lpm ecmp

del_link ipv4 nexthop

add_link ecmp l2_l3_rewrite

del_link nexthop l2_l3_rewrite

... // omit ipv6's links

1

2

3

4

5

6

7

(b) The script for loading ECMP to rp4bc.

load srv6.rp4 --func_name srv6

 // omit stage topology change

link_header --pre IPv6 --next SRH --tag 43

link_header --pre SRH --next IPv6 --tag 41 // inner IPv6

link_header --pre SRH --next IPv4 --tag 4 // inner IPv4

1

2

3

4

5

(c) The script for loading SRv6 to rp4bc.

Figure 5: Code and script for runtime programming.

5 HARDWARE ANALYSIS
We use the FPGA prototypes to infer the chip performance
and cost of PISA and IPSA, and leave the silicon-level evalu-
ation on ASIC for future work.
Throughput: Running at a 200MHz clock rate, the FPGA
prototype for PISA achieves 187.33Mpps, 153.71Mpps, and
191.93Mpps throughput for the three use cases, respectively,
while the prototype for IPSA achieves 65.81Mpps, 51.36Mpps,
and 86.62Mpps, respectively. We did not realize the ideal one-
cycle-per-packet throughput for simplicity. The declined
throughput for IPSA is mainly due to the memory access,
especially when the table entry size exceeds the data bus
width, and the extra time for loading the per-packet configu-
ration parameters in TSP. The former can be improved by
widening the data bus and the latter can be eliminated by
pipelining the TSP internal design.

73

HotNets’21, November 10-12, 2021, Virtual Event, UK Yong Feng, Haoyu Song, Jiahao Li, et al.

Resource: In addition to throughput, IPSA also has its im-
plication on resources. FPGA resource is categorized into
three aspects: front parser, processors, and crossbar.
The utilization comparison of key FPGA resources such

as Look-Up-Table (LUT) and Flip Flop (FF) is listed in Table 2.
Both prototypes contain only eight stage processors due to
power constraints. To support the in-situ programmability,
IPSA uses 14.84% more LUT and 61.40% more FF than PISA.

Architecture PISA IPSA
Resource (%) LUT FF LUT FF
Front parser 0.88% 0.10% - -
Processors 5.32% 0.47% 5.83% 0.85%
Crossbar - - 1.29% 0.07%
Total 6.20% 0.57% 7.12% 0.92%

Table 2: FPGA resource comparison of IPSA and PISA.

Power: The power consumption derived from the Vivado
Design Suite is shown in Table 3. The prototype of IPSA
consumes about 10% more power than that of PISA. We also
test applications with different number of effective physical
stages and show their power consumption in Fig. 6. Since
in IPSA the unused TSPs are excluded from the physical
pipeline and put in idle state, the power consumption is
mainly determined by the active TSPs. When more proces-
sors are implemented and better power management tech-
niques are used, IPSA will present a larger power advantage.

Use Case C1 C2 C3
Architecture PISA IPSA PISA IPSA PISA IPSA
Front parser 24.43 - 26.07 - 23.51 -
Processors 137.25 141.34 145.58 154.99 141.66 150.77
Crossbar - 33.46 - 34.79 - 32.18
Total 161.68 174.80 171.65 189.78 165.17 182.95

Table 3: Power (in Watt) for the three use cases.

Figure 6: Power consumption on active stages.
Discussion: The resource penalty for supporting IPSA can
be offset by its unique properties and compensated by newer
chip technologies: (1) A typical forwarding chip is usually
built with multiple parallel pipelines to boost the through-
put. PISA requires replicating to replicate most tables in each
pipeline, reducing the effective table storage. The disaggre-
gated memory pool in IPSA, on the other hand, can avoid
table replication by providing multiple access ports to the

memory blocks. (2) To expand a flow table in PISA, multiple
physical stages need to be combined to serve for a single
logical stage, and the processing logic should be replicated
among them, reducing the effective pipeline stages. In IPSA,
a logical stage can always map into a single TSP. (3) Since
only used TSPs are kept in the pipeline in IPSA, not only the
power consumption but also the pipeline latency is reduced,
which offsets the extra power and latency introduced by the
crossbar and distributed parser. (4) The disaggregated archi-
tecture of IPSA also allows homogeneous components to be
built on separate silicon chips and integrated with the 3D-IC
technology [8, 36, 39], effectively expanding the available
resource and reducing the memory access latency.

More details on algorithms, architecture, and cost perfor-
mance analysis are to be included in the extended paper.

6 RELATEDWORK
dRMT [9] also decouples the processors and the memory,
demonstrating the feasibility of resource pooling and crossbar-
based interconnection; however, its processors work in run-
to-completion mode, excluding the possibility of incremental
updates. POF [37] allows runtime table and function inser-
tion into data-plane devices, but only applies on network pro-
cessors rather than ASIC. Similarly, some software switches
(e.g., VPP [12]) support runtime updates but the techniques
cannot be ported to hardware. daPIPE [3] allows users to
integrate custom functions into the preexisting data-plane
program, but still requires recompiling the integrated pro-
gram. Mantis [43] allows predefined malleable values, fields,
and tables whose semantics can be changed during runtime
for reactive programming. While this is a step towards run-
time behavior changing, the flexibility is limited and fine-
grained, and the behavior must be predefined at design time.
Hyper4 [18] virtualizes the data plane to adapt to various for-
warding applications. Newton [47] supports a query template
for dynamic telemetry, which is hard to extend. Some other
works [23, 28, 46] virtualize network functions and match
tables, but cannot support runtime data-plane programming.
Limited to FPGA, Partial Reconfiguration (PR) [17] allows
users to reconfigure pre-allocated regions at runtime. How-
ever, the performance and scalability issues make FPGA un-
suitable for core switching chip, and the flexibility and de-
ployment delay of PR still cannot match that of IPSA.

7 CONCLUSION
IPSA and rP4 open a new design space for network pro-
grammability. While the preliminary implementation and
evaluation have shown the feasibility and benefits, we are
working on providing more design optimizations and analy-
sis in the extended paper, and plan to open source rP4 and
ipbm to promote further research.

74

In-situ Programmable Switching using rP4 HotNets’21, November 10-12, 2021, Virtual Event, UK

REFERENCES
[1] Zahraa N Abdullah, Imtiaz Ahmad, and Iftekhar Hussain. 2018. Seg-

ment Routing in Software Defined Networks: A Survey. IEEE Commu-
nications Surveys & Tutorials 21, 1 (2018), 464–486.

[2] Bas Antonin, Fingerhut Andy, Sivaraman Anirudh, and Arora
Dushyant. 2021. Behavioral Model of PISA (bmv2). https://github.
com/p4lang/behavioral-model. (2021).

[3] M. Baldi. 2019. daPIPE: a Data Plane Incremental Programming Envi-
ronment. In 2019 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS). 1–6.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming Protocol-Independent Packet
Processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87–95.

[5] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
wardingMetamorphosis: Fast Programmable Match-Action Processing
in Hardware for SDN. ACM SIGCOMM Computer Communication Re-
view 43, 4 (2013), 99–110.

[6] Broadcom. 2021. BCM56960 Series. https://www.broadcom.
com/products/ethernet-connectivity/switching/strataxgs/
bcm56960-series. (2021).

[7] Broadcom. 2021. Trident3-X7/BCM56870 Series. https:
//www.broadcom.com/products/ethernet-connectivity/switching/
strataxgs/bcm56870-series. (2021).

[8] Kun Cao, Junlong Zhou, Tongquan Wei, Mingsong Chen, Shiyan Hu,
and Keqin Li. 2019. A survey of optimization techniques for thermal-
aware 3D processors. Journal of Systems Architecture 97 (2019).

[9] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay
Vargaftik, Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-
Tse Chuang, Isaac Keslassy, et al. 2017. dRMT: Disaggregated Pro-
grammable Switching. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM). 1–14.

[10] Cisco. 2017. Segment Routing over IPv6 dataplane. https://www.
segment-routing.net/tutorials/2017-12-05-srv6-introduction/. (2017).

[11] Intel Corporation. 2021. Intel Tofino 2. https://www.intel.com/content/
www/us/en/products/network-io/programmable-ethernet-switch/
tofino-2-series.html. (2021).

[12] FD.io. 2016. Vector Packet Processing Platform. https://fd.io/
vppproject/vpptech. (2016).

[13] Clarence Filsfils, Darren Dukes, Stefano Previdi, John Leddy, Satoru
Matsushima, and Daniel Voyer. 2020. IPv6 Segment Routing Header
(SRH). RFC 8754. (March 2020). https://doi.org/10.17487/RFC8754

[14] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Bruno Decraene,
Stephane Litkowski, and Rob Shakir. 2018. Segment Routing Architec-
ture. RFC 8402. (July 2018). https://doi.org/10.17487/RFC8402

[15] The P4.org Applications Working Group. 2020. In-band Network
Telemetry (INT) Dataplane Specification. https://github.com/p4lang/
p4-applications/blob/master/docs/INT_v2_1.pdf. (2020).

[16] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. 2018. Sonata: Query-Driven Streaming
Network Telemetry. In ACM SIGCOMM.

[17] J.D. Hadley and B.L. Hutchings. 1995. Design Methodologies for Par-
tially Reconfigured Systems. In Proceedings IEEE Symposium on FPGAs
for Custom Computing Machines.

[18] David Hancock and Jacobus Van der Merwe. 2016. Hyper4: Using p4
to virtualize the programmable data plane. In Proceedings of the 12th
International on Conference on emerging Networking EXperiments and
Technologies. 35–49.

[19] Innovium. 2021. Innovium TERALYNX. https://www.innovium.com/
teralynx. (2021).

[20] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. 2018. Netchain: Scale-Free
Sub-RTT Coordination. In Proceedings of the 15th USENIX Conference
on Networked Systems Design and Implementation (NSDI).

[21] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In Proceedings of
the 26th ACM Symposium on Operating Systems Principles, Shanghai,
China.

[22] Jaeyoung Kim and Byungjun Ahn. 2006. Next-hop Selection Algorithm
over ECMP. In 2006 Asia-Pacific Conference on Communications. IEEE,
1–5.

[23] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anu-
pam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram,
Ethan Jackson, et al. 2014. Network virtualization in multi-tenant
datacenters. In 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14). 203–216.

[24] Johannes Krude, Jaco Hofmann, Matthias Eichholz, Klaus Wehrle,
Andreas Koch, and Mira Mezini. 2019. Online reprogrammable multi
tenant switches. In Proceedings of the 1st ACM CoNEXT Workshop on
Emerging in-Network Computing Paradigms. 1–8.

[25] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu,
Aditya Akella, and Michael M Swift. 2021. ATP: In-network Aggrega-
tion for Multi-tenant Learning.. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21).

[26] J. Löfberg. 2004. YALMIP : A toolbox for Modeling and Optimization in
MATLAB. In In Proceedings of the CACSD Conference. Taipei, Taiwan.

[27] N McKeown. 2021. Protocol-Independent Switch Architecture
(PISA). https://forum.stanford.edu/events/2016/slides/plenary/Nick.
pdf. (2021).

[28] László Molnár, Gergely Pongrácz, Gábor Enyedi, Zoltán Lajos Kis,
Levente Csikor, Ferenc Juhász, Attila Kőrösi, and Gábor Rétvári. 2016.
Dataplane specialization for high-performance OpenFlow software
switching. In Proceedings of the 2016 ACM SIGCOMM Conference. 539–
552.

[29] M. Moshref, Minlan Yu, R. Govindan, and Amin Vahdat. 2014. DREAM:
Dynamic Resource Allocation for Software-Defined Measurement. In
SIGCOMM.

[30] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat.
2015. SCREAM: Sketch Resource Allocation for Software-Defined
Measurement. In Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies (CoNEXT).

[31] S. Narayana, Anirudh Sivaraman, V. Nathan, Prateesh Goyal, V. Arun,
M. Alizadeh, V. Jeyakumar, and Changhoon Kim. 2017. Language-
Directed Hardware Design for Network Performance Monitoring. Pro-
ceedings of the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM) (2017).

[32] Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford, and David
Walker. 2016. Compiling Path Queries. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16).

[33] Tian Pan, Enge Song, Zizheng Bian, Xingchen Lin, Xiaoyu Peng, Jiao
Zhang, Tao Huang, Bin Liu, and Yunjie Liu. 2019. INT-Path: Towards
Optimal Path Planning for In-Band Network-wide Telemetry. In IEEE
INFOCOM 2019-IEEE Conference on Computer Communications. IEEE,
487–495.

[34] Sumet Prabhavat, Hiroki Nishiyama, Nirwan Ansari, and Nei Kato.
2011. On load Distribution over Multipath Networks. IEEE Communi-
cations Surveys & Tutorials 14, 3 (2011), 662–680.

[35] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini,
and Panos Kalnis. 2017. In-Network Computation is a Dumb Idea

75

https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56960-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56960-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56960-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.segment-routing.net/tutorials/2017-12-05-srv6-introduction/
https://www.segment-routing.net/tutorials/2017-12-05-srv6-introduction/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://fd.io/vppproject/vpptech
https://fd.io/vppproject/vpptech
https://doi.org/10.17487/RFC8754
https://doi.org/10.17487/RFC8402
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://www.innovium.com/teralynx
https://www.innovium.com/teralynx
https://forum.stanford.edu/events/2016/slides/plenary/Nick.pdf
https://forum.stanford.edu/events/2016/slides/plenary/Nick.pdf

HotNets’21, November 10-12, 2021, Virtual Event, UK Yong Feng, Haoyu Song, Jiahao Li, et al.

Whose Time Has Come. In Proceedings of the 16th ACM Workshop on
Hot Topics in Networks (HotNets).

[36] Wen-Wei Shen and Kuan-Neng Chen. 2017. Three-dimensional in-
tegrated circuit (3D IC) key technology: through-silicon via (TSV).
Nanoscale research letters 12, 1 (2017), 1–9.

[37] Haoyu Song. 2013. Protocol-oblivious forwarding: Unleash the power
of SDN through a future-proof forwarding plane. In Proceedings of
the second ACM SIGCOMM workshop on Hot topics in software defined
networking. 127–132.

[38] Mellanox Technologies. 2021. NVIDIA Mellanox SPECTRUM-2. https:
//www.mellanox.com/files/doc-2020/pb-spectrum-2.pdf. (2021).

[39] Xilinx. 2021. 3D ICs. https://www.xilinx.com/products/silicon-devices/
3dic.html. (2021).

[40] Xilinx. 2021. Alveo U280 Data Center Accelerator Card. https://www.
xilinx.com/products/boards-and-kits/alveo/u280.html. (2021).

[41] Zhaoqi Xiong and Noa Zilberman. 2019. Do switches dream of machine
learning? Toward in-network classification. In Proceedings of the 18th
ACM workshop on hot topics in networks. 25–33.

[42] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adap-
tive and fast network-wide measurements. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication.
561–575.

[43] Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive
Programmable Switches. In ACM SIGCOMM.

[44] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. 2011. ProgME:
Towards Programmable Network MEasurement. IEEE/ACM Transac-
tions on Networking 19, 1 (2011), 115–128.

[45] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping Wu.
2017. HyperV: A High Performance Hypervisor for Virtualization of
the Programmable Data Plane. In 2017 26th International Conference
on Computer Communication and Networks (ICCCN). IEEE, 1–9.

[46] Peng Zheng, Theophilus Benson, and Chengchen Hu. 2018. P4visor:
Lightweight virtualization and composition primitives for building
and testing modular programs. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies.
98–111.

[47] Yu Zhou, Dai Zhang, Kai Gao, Chen Sun, Jiamin Cao, Yangyang Wang,
Mingwei Xu, and Jianping Wu. 2020. Newton: Intent-Driven Network
Traffic Monitoring. In Proceedings of the 16th International Conference
on emerging Networking EXperiments and Technologies (CoNEXT).

76

https://www.mellanox.com/files/doc-2020/pb-spectrum-2.pdf
https://www.mellanox.com/files/doc-2020/pb-spectrum-2.pdf
https://www.xilinx.com/products/silicon-devices/3dic.html
https://www.xilinx.com/products/silicon-devices/3dic.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

	Abstract
	1 Introduction
	2 IPSA Overview
	2.1 Distributed On-demand Parsing
	2.2 Templated Stage Processor
	2.3 Elastic Pipeline
	2.4 Disaggregated Memory Pool

	3 Programming with rP4
	3.1 rP4 Language
	3.2 rP4 Design Flow

	4 Implementation and Evaluation
	4.1 IPSA Device Prototypes
	4.2 Tested Use Cases
	4.3 Performance Evaluation

	5 Hardware Analysis
	6 Related Work
	7 Conclusion
	References

