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Abstract—In this paper, we propose a separable structure mod-
eling approach for semi-supervised video object segmentation.
Unlike most existing methods which preclude the semantically
structural information of target objects, our method not only
captures pixel-level similarity relationships between the reference
and target frames but also reveals the separable structure of the
specified objects in target frames. Specifically, we first compute a
pixel-wise similarity matrix by using representations of reference
and target pixels and then select top rank reference pixels for
target pixel classification. According to the prior knowledge from
these top-rank reference pixels, we further appoint the represen-
tative target pixels for object structure modeling. Particularly,
in the structure modeling branch, we extract the shared and
individual features that can well represent the whole object and
its components, respectively. Moreover, the proposed method is a
fast algorithm without online fine-tuning and any post-processing.
We conduct extensive experiments and ablation studies on the
DAVIS-16, DAVIS-17, and YouTube-VOS datasets, and experi-
mental results on three widely-used datasets demonstrate that our
method achieves a superior performance, compared with state-
of-the-art semi-supervised video object segmentation approaches
in terms of speed and accuracy.

Index Terms—Video object segmentation, feature matching,
separable structure modeling, individual and shared components,
semi-supervised learning

I. INTRODUCTION

IDEO object segmentation is a fundamental and impor-

tant task in computer vision [18], [47], [69], and has
been applied into many practical applications including action
recognition [46], [68], object tracking [30], [53], video editing
[2], [6]. In recent years, great efforts have been devoted to
develop fast and accurate methods [17], [27], [65]. Generally,
video object segmentation contains unsupervised [28], [42],
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Fig. 1. The overview of the separable structure modeling approach. Our
method is composed of two branches, one of which is a feature matching
branch (blue dashed box) and another one is the separable structure modeling
branch (red dashed box). The feature matching branch regards reference and
target frames as pixel sets and utilizes the representative reference pixels
(solid circle) to vote target pixels as foreground (red circle) or background
(blue circle). The separable structure modeling branch leverages the prior
information of object components from the feature matching branch, and
models the individual and shared components of target objects. Finally, we
integrate the information from these two branches for the final target object
segmentation.

[44], [54], [63], semi-supervised [33], [40], [52], and inter-
active [34], [35], [39] tasks. We address the semi-supervised
task in this paper. Semi-supervised video object segmentation
aims to segment target objects along a video sequence with
the initial masks provided [10], [15], [43]. While encouraging
performance has been achieved, semi-supervised video object
segmentation is faced with complex visual appearance, fast
motion, and background clutter problems [61].

Recently, numerous semi-supervised video object segmenta-
tion methods have been proposed [16], [45], and these methods
can be mainly categorized into four classes: 1) online learning
based [4], [22]; 2) mask propagation based [48], [56], [59];
3) feature matching based [7], [20], [55]; and 4) tracking
based [50] approaches. For the first class, online learning
based methods [9], [24] first train a segmentation network and
then online fine-tune the network by augmenting the annotated
frame. Representative methods include OSVOS [4], OSVOS-
S [32], and OnAVOS [51]. While these methods have report-
ed impressive performance, online learning procedure entails
data augmentation that is computationally expensive. For the
second class, mask propagation based methods [1], [37], [62]
capture the temporal consistency by using the previous frame
and the predicted mask. Typical methods include MSK [37],
OSMN [62], and RGMP [56]. Mask propagation based meth-
ods need no time consuming online fine-tuning, but they highly
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rely on the predicted results of pervious frames and suffer
from occlusion and drifting problems. For the third class,
feature matching methods [7], [55] embed both reference and
target frames into a common representation space and exploit
pixel-level similarities for the label assignment. Representative
methods include PML [7], VideoMatch [20], and RANet
[55]. Feature matching based methods neglect both the object
structure and appearance information due to unordered pixels.
Moreover, they are easily affected by noises and outliers. For
the fourth class, tracking based methods [50], [53], [64] first
track candidate regions and then accurately segment each local
region. Typical methods include SiamMask [53] and FAVOS
[8]. Unlike feature matching methods, tracking based methods
leverage the object appearance information and maintain the
fast merit of object tracking. However, these methods view
object tracking and segmentation as two separate steps and the
segmentation performance critically hinges on tracking results.

To address the above-mentioned time consuming and struc-
ture modeling problems, we propose a feature matching based
approach for fast semi-supervised video object segmentation.
Notably, Fig. 1 illustrates the basic idea of our method. We
clearly observe that our method contains a pixel-wise feature
matching branch and a separable structure modeling branch.
The feature matching branch learns pixel-level similarities
between the reference and target frames, while the separable
structure modeling branch extracts the structure information of
target objects. To be specific, we leverage information from
these two branches to guide video object segmentation in
two aspects. On one hand, since video object segmentation is
formulated as a pixel labeling problem, the feature matching
branch learns pixel-wise correspondences for fine-grained seg-
mentation. However, this branch lacks the cognitive ability of
object structures. On the other hand, the separable structure
modeling is beneficial to reveal subtle object patterns and
coarsely localize objects. Particularly, the branch is inspired
by the observations that the appearance of a target object may
be dynamically changing throughout a video sequence but its
components tend to be consistent and are more discriminative
than the whole object. Hence, we learn individual features of
object components and the shared feature of the whole object.

Unlike conventional matching based methods [7], [20],
[55] which merely exploit pixel-wise relationships between
the reference and target frames to classify target pixels, our
method not only learns pixel-level similarities, but also extracts
the semantically structural information of target objects for
spatial details and localization. Notably, our method provides
a strong baseline for matching based methods in terms of both
accuracy and speed. Furthermore, there are two key differences
with prevalent structure modeling methods [14], [67]. One
is that previous structure modeling methods either introduce
additional image data with the same labels for localizing
objects [67] or pose structural constraints on parsing results
via a loss function [14]. Differently, the separable structure
modeling branch utilizes pseudo labels of target pixels from
the feature matching branch without extra data and the loss
function introduced. Another one is that our method learns the
individual and shared representations for modeling the local
and global internal structures of objects, respectively.

Importantly, our method takes the structure modeling of
the target frame into consideration. We further conduct com-
prehensive experiments to evaluate the effectiveness of the
proposed method, and experimental results on the DAVIS-16,
DAVIS-17, and YouTube-VOS datasets clearly demonstrate
that our method achieves very competitive performance com-
pared with state-of-the-art methods on the tradeoff between
accuracy and speed.

The main contributions of the proposed method are sum-
marized as follows:

1) We propose a separable structure modeling approach for
fast semi-supervised video object segmentation without
online fine-tuning and post-processing.

2) Our method leverages not only pixel-wise similarities
between reference and target frames but also the struc-
ture information of target objects.

3) We learn the shared and individual representations for
the structure modeling, where the individual representa-
tions model object components and the shared represen-
tation encodes information of the whole object.

4) We conduct extensive experiments on the DAVIS-16,
DAVIS-17, and YouTube-VOS datasets, and experimen-
tal results validate the effectiveness and efficiency of the
proposed method.

The remainder of this paper is organized as follows: Section

IT reviews the related work. Section III details the proposed
separable structure modeling approach. Section IV describes
experimental settings, results and analyses, and visualizations.
Section V concludes this paper.

II. RELATED WORK

Existing semi-supervised methods can be roughly classified
into four categories, i.e., online learning based [4], [22], mask
propagation based [48], [56], [59], feature matching based [7],
[20], [55], and tracking based [50] methods. Next, we briefly
introduce these four categories.

A. Online Learning

Online learning based methods fine-tune a pre-trained seg-
mentation network by using the first annotated frame in testing
videos. For example, Caelles er al. [4] extracted the target-
specific appearance information at test time by fine-tuning a
pre-trained network on the first frame. Paul et al. [51] extended
the previous method and selected confident regions for online
adaptation. Maninis et al. [32] combined the instance-level
semantic information by using instance proposals to improve
segmentation performance. Khoreva ef al. [24] conducted data
augmentation to generate training data for the proposed Lucid
tracker. Cheng et al. [9] proposed a SegFlow architecture that
jointly learned object segmentation and optical flow. Andreas
et al. [40] proposed a novel segmentation framework that
was composed of two network components, where the target
appearance model was updated online and the segmentation
model was trained offline, respectively. Xiao et al. [58] learned
a meta-learner of a base segmentation model for online adap-
tation. Generally, many existing semi-supervised video object
segmentation methods [37], [56] regarded online fine-tuning
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as a post-processing step, which has been proven to certainly
promote segmentation performance. However, online learning
based methods are time-consuming for practical applications
due to data augmentation in the test phase.

B. Mask Propagation

Mask propagation based methods promise to maintain the
spatio-temporal consistency of segmentation results by lever-
aging the initial and previous frame information. For example,
Perazzi et al. [37] concatenated both the predicted mask of
the previous frame with the current frame as an input of
MaskTrack, which produced a refined mask for the current
frame. Seoung et al. [56] proposed a Siamese encoder-decoder
network that also inputted the target frame and the mask of
the previous frame. Yang et al. [602] adapted a segmentation
network to target-specific objects by using conditional batch
normalization [12]. Xu et al. [60] proposed a sequence-to-
sequence network to capture long-term spatial-temporal infor-
mation among videos. Carles et al. [48] proposed a recurrent
spatial and temporal architecture to cope with multi-object
segmentation. Lin er al. [26] designed the instance-agnostic
and instance-specific modules for multiple object segmenta-
tion. Joakim et al. [23] developed a generative appearance
model that provided both foreground and background feature
distributions in a single forward pass.

C. Feature Matching

Feature matching based methods compute a similarity ma-
trix by using representations of reference and target pixels
and further assign binary labels to these target pixels based on
the learned similarity relationships. For example, Yoon et al.
[41] encoded multi-scale pixel-level similarities from different
depth layers. Chen et al. [7] formulated semi-supervised video
object segmentation as a pixel-level retrieval problem and
adopted metric learning to learn pixel-wise correspondences.
Hu et al. [20] matched foreground and background features of
the reference frame with target features, simultaneously. Ci et
al. [11] learned location-sensitive embeddings for foreground
prediction. Paul et al. [49] adapted both the global and local
information from the first and previous frames to the current
frame. Wang et al. [55] combined feature matching and mask
propagation into an encoder-decoder framework. Behl et al.
[3] developed a meta-learning approach that represented target
objects by using visual words. Li et al. [25] developed a video
object segmentation approach that first tracked and segmented
objects, and then re-identified these objects. Seoung et al.
[36] proposed the space-time memory networks for spatial and
temporal matching. Kevin et al. [13] proposed a capsule-based
approach for capsule matching between video clips and the
reference frame. Zhang et al. [66] developed a transductive ap-
proach for video object segmentation. Lu et al. [29] performed
message passing and memory updating via a graph memory
network. Lu et al. [30] leveraged multi-granularity information
including frame, short-term, long-term, and video granularities
for both zero-shot and one-shot video object segmentation.

D. Tracking

Tracking based methods usually track objects or object parts
by using object appearance information. For example, Hu et al.
[19] proposed an instance-level segmentation framework that
tracked and segmented individual objects. Cheng er al. [8]
developed a part tracker to track representative object parts
in the initial frame. Luiten et al. [31] proposed a proposal
generation, refinement, and merging approach for video object
segmentation. Wang et al. [53] unified object tracking and ob-
ject segmentation into a framework. Zeng et al. [64] proposed
a differentiable matching layer to merge object proposals.
Chen et al. [5] designed a state-aware tracker that iteratively
updated the cropping strategy of tracklet and state estimator.
Huang er al. [21] proposed a temporal aggregation network
and a template matching mechanism to integrate segmentation
and tracking. Paul et al. [50] conducted multi-object detection,
tracking, and segmentation in a unified network.

III. APPROACH

In this section, we first provide an overview of the proposed
method. Then, we elaborate on the feature matching branch
and the separable structure modeling branch, respectively.

A. Overview

Given a video sequence {I;}7_, with T frames and the
ground truth segmentation Y; = {y'”) &, of the first frame
I, with N target objects, the objective of semi-supervised
video object segmentation is to produce the segmentation
masks {Y;}Z, of subsequent video frames {I;}7, [20].
Specifically, N represents the number of objects to be seg-
mented along a video sequence. To be simple, we only take
one object situation N = 1 for an example, and the multiple
object extension is described at last.

Fig. 2 illustrates the pipeline of our method, which mainly
consists of two branches: 1) the feature matching branch and 2)
the separable structure modeling branch. The feature matching
branch provides fine-grained information about foreground and
background. However, due to the lack of structure information
of target objects, pixel-wise matching easily suffers from drift-
ing and discontinuity problems [20]. To alleviate these issues,
we further propose a separable structure modeling branch.
While visual patterns of object appearances can be also used
for object localization, separable structure modeling identifies
more discriminative regions subject to occlusions and rotations
since object components may keep consistent throughout video
sequences [14], [67]. Besides, the structure modeling branch
leverages information from the feature matching branch with-
out much computation. Finally, we incorporate both pixel-wise
similarity and structure information for object segmentation.

Generally, our network follows the encoder-decoder archi-
tecture, where the encoder is used for feature extraction and
the decoder is used for feature fusion and object segmentation.
For the reference frame and the target frame, we first employ
a Siamese network [56] with shared parameters to transform
them into a common representation space and extract their fea-
tures. Then, the similarity relationships between target pixels
with foreground and background pixels of the reference frame
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Fig. 2. The architecture of the separable structure modeling approach. Our network is an encoder-decoder framework with a frame and mask pair as an input.
The feature matching branch computes a voting matrix by using pixel representations of reference and target frames, and the top rank reference pixels are
used to classify foreground and background. The structure modeling branch computes attentive maps between all target pixels with representative target pixels
that are specified by using the voting matrix. Moreover, the individual and shared features are learned with these attentive maps. Finally, the skip connections
from the encoder, high-level semantic features, voting representations, and structure representations are concatenated and decoded for segmentation.

are captured. According to the prior information concerned
with target objects, we also select representative target pixels
to model objects in the target frame. Particularly, the individual
features of the selected pixels are extracted and the shared
feature of the target object is also learned, representing object
components and the whole object, respectively. In the same
way as the feature matching branch, we compute similarity
relationships between the individual and shared features with
target features. Lastly, our network decodes the merged infor-
mation from these two branches. Next, we describe the feature
matching and separable structure modeling branches in detail.

B. Feature Matching Branch

The feature matching branch is inspired by the assumption
that pixels of the same category are close to each other in
the same embedding space [7], [20], [41]. We follow this
assumption and vote target pixels by using annotated reference
pixels. Specifically, the feature matching branch regards both
the reference frame and the target frame as pixel sets. By
using the binary mask provided in the reference frame, we
can obtain foreground and background pixels of reference
objects. Then, the foreground and background voting of target
pixels is performed based on similarities with foreground and
background pixels in the reference frame.

Formally, we denote X, € RF*XWxC apd X, € REXWxC
as feature vectors of reference I, and target I, frames, where
H, W, and C are the height, width and the channel number
of feature maps. We denote the spatial domain of the feature
map as = {(h,w) | h < Hyw < W,h,w € Ny}. As the
reference mask Y, € {0, 1}7*W is given, we define sets of

foreground and background features ry € RV/*C and ), €
RN xC g,

rr = {Xr(p) | Yr(p> =1l,pe 9}7
r, = {X,;(p) | Y,(p) =0,p € Q},

where Y, (p) and X, (p) are the element and feature of Y,
and X, at the spatial position p, respectively. Ny and N, are
the numbers of foreground and background features.

Having obtaining the foreground features ry and back-
ground features r;, we perform a voting for target features. We
first flatten the target feature X; € R¥"W > and then compute
the scoring matrices Sy € REWXNs and S, € REWXNo pe-
tween target features with foreground and background features
as,

)

Sf:[r}*xt;...;
Sy = [rp *Xy5.. 05

7« X
JfV i t] (2)
r, o« Xy,

where rzc € RY and r, € R® represent the i*" elements of
feature sets ry and ry, respectively. * denotes the convolution
operation between a foreground or background feature and the
target feature.

To eliminate the influence of noises and outliers, we only
take top rank similarities among foreground and background
pixels with target pixels into account. Specifically, we adopt
this top rank strategy based on the following insights. Firstly,
it is quite unreasonable for foreground reference pixels to vote
for target background pixels or for background reference pixels
to vote for target foreground pixels. Secondly, one object is
usually composed of several different components, but there
exists a considerably large intra-class difference among each
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(a) Representative target pixels

(b) Selected pixel and region examples

Fig. 3. Visualizations of top rank target pixels and the concerned regions from
the blackswan video on DAVIS-17. We only show four representative target
pixels (yellow x) for an example, and we select the concerned coarse regions
(yellow curve regions) that have high responses with the corresponding target
pixels by using heat maps of 32 individual features. Zoom in for details.

component, indicating that one target pixel can be only well
represented by reference pixels within a similar local region.
The top rank strategy selects representative pixels with high
probabilities to filter out unrelated foreground or background
pixels. Intuitively, we can identify foreground objects either by
using foreground information or by removing the background.
Particularly, background regions may contain similar objects
with foreground, which confuses the foreground pixel selec-
tion. This finding also drives us to equally treat foreground
and background pixels.

To be specific, we first compute ranking scores rsy € RNs
and rs, € R by averaging columns of the scoring matri-
ces Sy and Sp. Then, we select top K foreground and K
background pixels according to ranking scores rs; and rs;,.
Afterwards, we obtain the voting matrices V¢ € RHWXK apd
V, € RIWXK by selecting columns in Sy and S, that are
concerned with top K foreground and K background pixels.
We also analyze different voting strategies including maximum
and averaged voting matrices and different numbers of selected
pixels. Finally, we achieve the voting feature V € RH*W>x2K
by reshaping the concatenated voting matrix [V s; V).

Our feature matching branch exploits pixel-level matching
between reference and target pixels, and provides more fine-
grained information than propagation and tracking based meth-
ods. However, this branch neglects structure information.

C. Separable Structure Modeling Branch

To address the above-mentioned issue, we propose a sepa-
rable structure modeling branch. On one hand, the separable
structure modeling has been proved to be beneficial to identify
discriminative object regions [67]. On the other hand, regard-
ing an object as a whole severely suffers from many challenges
including viewpoint variations and deformation [3], but the
separable structure modeling of target objects is more robust to
intra-object variations. Besides, object segmentation requires
a full understanding of the composition of segmented objects
[14]. However, due to the absence of class and object infor-
mation of the target frame, many video object segmentation
methods adopt matching and tracking mechanisms to capture
correspondences between the reference and target frames. Our
structure modeling branch is the first attempt to model target
objects. This branch is motivated by the observation that since
objects have internal structures, many unsupervised methods
[30], [42] succeed in detecting salient objects without the label

information. Our method aims to provide this intrinsic object
information as well as inter-frame correspondences.

Existing prevalent object structure modeling approaches
[14], [67] either exploit semantic joints in person or extract
attentive regions of objects in an unsupervised manner. Differ-
ently, our separable structure modeling branch reveals object
components by using the prior information from the feature
matching branch. Specifically, in the feature matching branch,
target pixels are utilized to select top rank foreground pixels.
On the contrary, these foreground pixels are informative and
can be used to vote for target representative pixels. Therefore,
we reuse the information of the foreground voting matrix to
choose representative target pixels. Fig. 3 visualizes top rank
target pixels, example pixels and their concerned regions with
high responses. The selected pixels can well represent object
patterns, such as the head, tail, and neck of the black swan.

Unlike the feature matching branch, we compute the ranking
score by averaging rows of the voting matrix V, and select
top rank K target features. Formally, we obtain K individual
attentive matrices {M}, € RE>*W1E  between representative
target features {x} € RO} and X, as,

M, = xF « X, (3)

where xF and M}, represent the k' representative feature
and attentive matrix. Each attentive matrix focuses on a local
region of objects. Then, we partition the target features into
K individual features denoted as X; = [X};X?2;...;XK],
Xk ¢ REXWxX %, and we conduct element-wise multiplication
® on the k** individual feature and attentive matrix M, to

learn the k*" individual feature Zj; € R¥ xWx g as,

Z, = XF o M. 4)

Afterwards, K individual features are totally concatenated
for the final individual feature. Furthermore, we average the
selected features of representative target features and compute
the shared attentive matrix M € RT*XW as,

M, = (% kaf)*xt. (5)

Then, we conduct dimension reduction on the input feature
with a 1 x 1 convolutional layer, and the shared feature Z,
is generated by applying element-wise product on the shared
attentive matrix and the target feature,

Z; =X; ®©Ms;. (6)

We concatenate the individual and shared attentive features
as the output of the separable structure modeling branch.
Finally, we integrate the information from both the feature
matching branch and the separable structure modeling branch.
Specifically, the inputs to our decoder are features from skip
connections and high-level sematic information from encoder
together with these combined features. Likewise, we adopt
the cross-entropy loss as the loss function to optimize model
parameters. The training procedure of the proposed method is
summarized in Algorithm 1.

Discussion: Due to different context information among refer-
ence and target frames, it is more appropriate to capture target
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(a) Heat maps of individual features

(b) Heat maps of voting feature

Fig. 4. Visualizations of 32 heat maps for each individual feature Zj, and 32
heat maps for the voting feature V from the blackswan video on DAVIS-17.
Zoom in for more details.

object details via target pixels instead of reference pixels. Fig.
4 visualizes the heat maps of individual features and the voting
feature. For each heat map in individual features, the pixel with
the highest response represents a selected pixel shown in Fig.
3(a). We observe that heat maps from individual features are
attentive to local regions around representative target pixels
and spatial details can be easily extracted. However, selected
reference pixels tend to have similar responses to pixels of the
whole target object, which is insensitive to object structures.

D. Extension to Multiple Object Segmentation

Many semi-supervised video object segmentation methods
[53], [56] handle the multiple object issue by separating a
multi-object mask into multiple masks with one single object
and segmenting each object one by one. However, this strategy
is very time-consuming. Differently, we adopt a flexible strat-
egy to share both encoder features and voting matrices for all
objects in the same frame. By using this strategy, our method
can alleviate repetitive computation and harvest time-saving.

IV. EXPERIMENTS

In this section, we first detail experimental settings including
datasets, evaluation metrics, the model architecture, implemen-
tation details, and baselines. Then, we compare our method
with state-of-the-art methods and conduct ablation studies.
Finally, we visualize some experimental results.

A. Experimental Setup

1) Datasets: We evaluated the proposed method on three
standard video object segmentation datasets, including the
DAVIS-16 [38], DAVIS-17 [39], and YouTube-VOS dataset-
s [60]. Specifically, DAVIS-16 consists of 50 video sequences
totally with 3,455 annotated frames, and each video sequence
was captured at a 24 frame per second and a 1080p spatial
resolution. The temporal extent of these video sequences is
about 2-4 seconds. In DAVIS-16, the segmented target contains
one single object or a combination of multiple objects. The
DAVIS-17 dataset is an extension for the DAVIS-16 dataset. In
DAVIS-17, there are 150 video sequences and 10,459 frames,
and these video sequences are divided into the training set
(60), the validation set (30), and the test set (60). Each video
sequence contains 3 objects on average. DAVIS-17 is a multi-
object segmentation dataset. The YouTube-VOS dataset is a
large-scale video object segmentation dataset and has 197,272
annotations and 4,453 YouTube video clips of which 3471 for

Algorithm 1: Training procedure of the proposed method

Input: A video sequence {I;}, and mask {Y;}/_;

Output: The parameters 6 of the proposed method;
0 < InitializeParameter(6);
for frame 1, € {L-}Z;l do
[1;Y,], [L:; Yio1] + SamplingPairs({I;} ", {Y:} 7))
X, Xt < ResNet50([I-; Y], [Tt Yeo1])s
% The feature matching branch
rs,rp < ObtainFBgroundFeatures(X,, Y,) via Eq.(1)
S#, Sy < ComputeScoring(X¢, rs, rp) via Eq. (2);
V¢,V <—ObtainVotingMatrices(S ¢, Sy);
V [V, Vil
% The separable structure modeling branch
{xF} | < SelectRepresentativeTargetPixels(X¢, V 5);
for x; € {x{}i_, do
‘ My eComputeIndiVidualMatrices(xf, X¢) via Eq. (3);
end
M, +ComputeSharedMatrix({x}}¥_,, X,) via Eq. (5);
Zy, Zs < ObtainAttentiveFeatures(X;, My, My);
% Predict segmentation result
Y: < Decoder([X:, X, Zk,Zs, V]);
% Back propagation
L < ComputeCrossEntropy(Y+:, Y¢)
0« 60—noL/OO

end

training, 474 for validation, and the rest 508 for testing. The
YouTube-VOS dataset covers many various challenges includ-
ing occlusions, fast object motions, and change of appearances.
Moreover, YouTube-VOS contains 91 object categories includ-
ing 65 seen object categories and 26 unseen object categories
in the validation dataset, which measures the generalization
performance of video object segmentation methods. Besides,
YouTube-VOS is also a multi-object segmentation dataset.

2) Evaluation Metrics: Following previous methods [38],
[39], we adopted three conventional evaluation metrics, i.e.,
region similarity J, contour accuracy J, and their average
G, to measure the performance of each video frame. Region
similarity J is defined as the intersection-over-union of the
predicted segmentation and the ground truth mask. Contour
accuracy F reflects contour-based precision and recall, and is
computed by using the F-measure of contour points between
the predicted segmentation and the ground truth mask. G is
defined as the average of 7 and JF. For evaluation of video
sequences, we adopted the J (F) mean, J (F) recall, and J
(F) decay, representing the mean, recall, and decay measures
throughout video sequences. For YouTube-VOS, J (F) seen
and 7 (F) unseen metrics were adopted to report segmentation
performance when seen and unseen object categories exist in
the training stage.

3) Model Architecture: Our model followed an encoder-
decoder architecture, where the encoder was a pyramid-like
ResNet-50 network pre-trained on ImageNet. In the feature
matching branch, we only computed voting matrices by using
the Res4 feature maps with the dot product operator. We
selected both top 32 representative foreground and background
pixels in the reference frame to vote for each target pixel.
For the separable structure modeling branch, we also selected
the top 32 target pixels with the highest matching scores as
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TABLE I
QUANTITATIVE COMPARISONS WITH STATE-OF-THE-ART ONLINE AND OFFLINE LEARNING BASED METHODS ON THE DAVIS-16 VALIDATION DATASET
BY USING J, F, G METRICS, AND AVERAGE PER-FRAME RUNTIME. KEY PROPERTIES OF THESE METHODS ARE SUMMARIZED, 1.E., FINE-TUNING (FT),
OPTICAL FLOW (OF), POST-POSTING (PP), AND PRE-TRAINED DATASETS INCLUDING PASCAL VOC (P), MS-COCO (C) AND SYNTHETIC DATA (S).

PD DAVIS-16

Method FT OF PP Runtime

P C S g1 Tmean Trecatt T Jdecay + Fmean Frecatl T -Fdecayvl/
Online methods
OSVOS [4] v X v X X X 80.2 79.8 93.6 14.9 80.6 92.6 15.0 10.0s
OSVOS-S [32] v X v X v X 86.6 85.6 96.8 5.5 87.5 95.9 8.2 4.5s
OnAVOS [51] v X v v v/ 85.5 86.1 96.1 5.2 84.9 89.7 5.8 13.0s
CINM [1] v v X o X/ 84.2 83.4 94.9 12.3 85.0 92.1 14.7 > 120s
MSK [37] v v v v X X 77.6 79.7 93.1 8.9 75.4 87.1 9.0 12.0s
Lucid [24] v v A G 83.6 84.8 - - 82.3 - - 40.0s
MoNet [57] v v v v X X 84.7 84.7 96.8 6.4 84.8 94.7 8.6 14.1s
SFL [9] v v X X x Vv 76.1 76.1 90.6 12.1 76.0 85.5 10.4 7.90s
PReMVOS [31] v v X X X Vv 86.8 84.9 96.1 8.8 88.6 94.7 9.8 38.0s
MVOS [58] v X X XX 83.7 83.3 - - 84.1 - - 0.43s
Offline methods
RGMP [56] X X X X/ 81.8 81.5 91.7 10.9 82.0 90.8 10.1 0.13s
FAVOS [§] X X v X X X 81.0 82.4 96.5 4.5 79.5 89.4 5.5 1.80s
PML [41] X X X X X X 77.4 75.5 89.6 8.5 79.3 93.4 7.8 0.28s
OSMN [62] X X X X v X 73.5 74.0 87.6 9.0 72.9 84.0 10.6 0.14s
VideoMatch [20] X X v X X X - 81.0 - - - - - 0.23s
RANet [55] X X X X X v 85.5 85.5 97.2 6.2 85.4 94.9 5.1 0.033s
SiamMask [53] X X X X v Vv 70.0 71.7 86.8 3.0 67.8 79.8 2.1 0.028s
FEELVOS [49] X X X X v X 81.7 81.1 90.5 13.7 82.2 86.6 14.1 0.51s
STM [36] X X X X x Vv 89.3 88.7 97.2 5.0 89.9 95.4 43 0.16s
Proposed method
Ours X X X X X X 85.9 86.2 97.1 53 85.6 92.3 5.6 0.027s

attentive pixels. The input feature maps were separated into
32 groups in the group convolution layer, and each group was
weighted by an attentive map to focus on an individual com-
ponent of target objects. All groups were further concatenated
and channel-wisely summed up as individual features in the
final. Furthermore, we employed another 1 x 1 convolutional
layer on input feature maps, and then conducted element-wise
multiplication on the averaged attentive maps to extract shared
features. Afterwards, the outputs of two branches were merged
by concatenation, and were fed into a 3-layer decoder.

4) Implementation Details: For training, we randomly se-
lected two frames from a video sequence, of which one frame
and its annotated mask served as the reference input, while
another one frame and its blurred previous mask were viewed
as the target input. Notably, a Gaussian kernel was employed to
blur the previous mask. We applied random flipping, scaling,
translation, rotation, cropping to augment the training data.
Besides, we cropped a frame-mask pair around object locations
identified by using the predicted mask of the previous frame.
This crop strategy ensures that an object randomly appears at
any position of the cropping window. For testing, we also
took the first frame of a video sequence and its mask as
the reference input. Moreover, we cropped the target frame
according to the estimated mask of the previous frame to keep
target objects at the center of cropping windows. Note that
our model predicted results of subsequent frames in a video
sequence without any data augmentation and post-processing.

We iteratively trained our network for 20 epochs on the
YouTube-VOS training set with Adam optimizer, whose batch
size and initial learning rate were set as 16 and 10~°, respec-
tively. The initial learning rate decayed 10% after every epoch.

Our model was implemented by using PyTorch and was trained
on 4 TITAN Xp GPUs. We evaluated the proposed method on
the YouTube-VOS validation set and test set with only 1 GPU.
Having pre-trained on the YouTube-VOS dataset, we further
fine-tuned our model on DAVIS-16 and DAVIS-17 by using
the same strategy. The learning rate was initialized as 10~ and
decayed every 5 epochs. Following fine-tuning, we evaluated
our model on the DAVIS-16 and DAVIS-17 validation set.
The fine-tuned model with the best validation performance
was selected to test on the DAVIS-17 test set.

5) Baselines: In this paper, we compared the proposed
method with state-of-the-art semi-supervised video object seg-
mentation methods. These methods are one-shot video object
segmentation (OSVOS) [4], video object segmentation without
temporal information (OSVOS-S) [32], online adaptation of
convolutional neural networks for video object segmentation
(OnAVOS [51]), online meta adaptation for fast video ob-
ject segmentation (MVOS) [58], deep motion exploitation
for video object segmentation (MoNet) [57]. learning video
object segmentation from static images (MSK) [37], proposal-
generation, refinement and merging for video object segmenta-
tion (PReMVOS) [31], joint learning for video object segmen-
tation and optical flow (SFL) [9], video object segmentation
via inference in a cnn-based higher-order spatio-temporal mrf
(CINM) [I1], fast video object segmentation by reference-
guided mask propagation (RGMP) [56], fast and accurate
online video object segmentation via tracking parts (FAVOS)
[8], blazingly fast video object segmentation with pixel-wise
metric learning (PML) [7], efficient video object segmentation
via network modulation (OSMN) [62], matching based video
object segmentation (VideoMatch) [20], end-to-end recurrent
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Fig. 5. Visualizations of performance and speed comparisons between our method and state-of-the-art methods on the DAVIS-16 validation dataset.
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network for video object segmentation (RVOS) [48], ranking
attention network for fast video object segmentation (RANet)
[55], fast end-to-end embedding learning for video object
segmentation (FEELVOS) [49], fast online object tracking
and segmentation (SiaMask) [53], state-aware tracker for
real-time video object segmentation (SAT) [5], a generative
appearance model for end-to-end video object segmentation
(AGAME) [23], video object segmentation using space-time
memory networks (STM) [36].

B. Comparison with State-of-the-Arts

1) DAVIS-16: To evaluate the effectiveness of our method,
we provided comprehensive comparisons between our method
with state-of-the-art ten online and nine offline methods on
the DAVIS-16 validation set. Online methods are OSVOS [4],
OSVOS-S [32], OnAVOS [51], CINM [1], MSK [37], Lucid

[24], MoNet [57], SFL [9], PReMVOS [31], and MVOS [58].
Offline methods are RGMP [56], FAVOS [&], PML [41],
OSMN [62], VideoMatch [20], RANet [55], SiamMask [53],
FEELVOS [49], and STM [36]. We detailed key properties
of each method including online fine-tuning, optical flow, and
pre-trained datasets.

Table I presents experimental results of different semi-
supervised video object segmentation methods. We clearly
observe that our method achieves the best speed and accuracy
trade-off without any fine-tuning, optical flow, post-posting,
and data augmentation strategies. While STM obtains the best
performance, this method highly relies on additional datasets
including salient object detection and semantic segmentation
datasets for pre-training. Without pre-training, the performance
of STM drops sharply. Besides, this method requires more
training time. SiamMask is one of the fastest approaches but its
performance is unsatisfactory. Both VideoMatch and RANet
are representative feature matching methods and exhibit the
superior performance. However, VideoMatch conducts post-
processing for outlier removal and online update, and RANet
also needs many static image datasets for pre-training. Our
method promotes the performance of feature matching meth-
ods by capturing the separable structure in the target frame.

To intuitively compare different semi-supervised video ob-
ject segmentation methods, we provided the performance (G)
and speed (frame per second) comparisons between the pro-
posed method and state-of-the-art methods on the DAVIS-16
validation dataset. Our method ran on a TITAN Xp GPU and
the average time for processing a video frame was reported.
Fig. 5 depicts performance (G) and speed (frame per second)
comparisons. We observe that our method achieves the best
balance in terms of performance and speed. While online fine-
tuning based methods including PReMVOS, OnAVOS, and
OSVOS-S tend to have a high performance, their speeds are
far from the real-time requirement. STM achieves the best
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TABLE II
ATTRIBUTE-BASED ANALYSIS ON THE DAVIS-16 VALIDATION DATASET. THERE ARE FIFTEEN ATTRIBUTES, INCLUDING APPEARANCE CHANGES (AC),
BACKGROUND CLUTTER (BC), CAMERA SHAKE (CS), DYNAMIC BACKGROUND (DB), NON-LINEAR DEFORMATION (DEF), EDGE AMBIGUITY (EA),
FAST-MOTION (FM), HETEROGENEUS OBJECT (HO), INTERACTING OBJECTS (IO), LOW RESOLUTION (LR), MOTION BLUR (MB), 0CCLUSIONS (OCC),

OUT-OF-VIEW (OV), SHAPE COMPLEXITY (SC), SCALE VARIATION (SV) [

]. WE REPORTED THE AVERAGE G (%) OF VIDEOS WITH ONE ATTRIBUTE.

Metric AC BC CS DB DEF EA FM

HO 10 LR MB OCC OV SC SV

g1 89.2 89.0 879 785 844 818 86.7

823 794 902 820 84.6 828 747 834

TABLE III
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART ONLINE AND
OFFLINE LEARNING BASED METHODS ON THE DAVIS-17 VALIDATION
DATASET BY USING 7, F, G METRICS.

Method g1t Tmean Jdecay + Fmean ]:decayJ/
Online methods

OSVOS [4] 60.3 56.6 26.1 63.9 27.0
OSVOS-S [32] 68.0 64.7 15.1 71.3 18.5
OnAVOS [51] 65.4 61.6 27.9 69.1 26.6
CINM [1] 70.6 67.1 24.6 74.1 26.2
MSK [37] 54.3 51.2 28.3 57.3 29.1
MVOS [58] 59.2 56.3 - 62.1 -
MoNet [57] 58.8 55.4 - 66.2 -
PReMVOS [31] 77.8 73.9 16.2 81.8 19.5
Offline methods

RGMP [50] 66.7 64.8 18.9 68.6 19.6
FAVOS [8] 58.2 54.6 14.1 61.8 18.0
OSMN [62] 54.8 52.5 21.5 57.1 24.3
RVOS [48] 60.6 57.5 24.9 63.6 28.2
RANet [55] 65.7 63.2 18.6 68.2 19.7
Siam RCNN [52]  70.6 66.1 15.8 75.0 16.2
SiamMask [53] 53.1 51.1 -1.1 55.0 1.9
FEELVOS [49] 71.5 69.1 17.5 74.0 20.1
SAT [5] 72.3 68.6 13.6 76.0 -
AGAME [23] 71.0 68.5 14.0 73.6 18.5
STM [36] 81.7 79.2 8.0 84.3 10.5
Proposed method

Ours 77.6 75.3 11.7 79.9 15.3

performance but its speed is relatively low compared with the
latest methods. For feature matching methods, RANet and our
method obtain a high speed and a comparable accuracy on
the DAVIS-16 validation dataset. However, RANet carries a
risk of model over-fitting as the pre-trained datasets are static
images with only one single object.

Since semi-supervised video object segmentation only pro-
vides object information in the first frame, their segmentation
performance decreases throughout video sequences. To ana-
lyze performance decays of different methods, we conducted
experiments on the DAVIS-16 validation dataset. As different
video sequences contain different numbers of frames, we first
normalized the length of each sequence into [0, 1] by dividing
its sequence length, and then computed the percentage of
the sequence length for each frame. We averaged all video
sequences on the DAVIS-16 dataset and reported the mean G
result under different percentages of the sequence length. Fig.
6 presents experimental results of different methods along the
temporal domain. We clearly observe that the G performance
for all methods drops over time. The reason is that due to
appearance changes along video sequences, target objects are
more dissimilar from the specified objects in the first frame.
However, we see that the performance of our method decreases

smoothly, validating the robustness of our method throughout
video sequences. While PReMVOS and OnAVOS attain a bet-
ter performance than our method before 20% of the sequence
length, our method reports a comparable performance with
these methods in the following frames. SiamMask, RGMP,
and OSVOS are sensitive to appearance changes and a sharp
performance decay is witnessed.

Furthermore, to evaluate the effectiveness of our method
under different challenging factors, we conducted an attribute-
based analysis on the DAVIS-16 validation dataset. Table II
presents experimental results with different attributes such as
appearance change, background clutter, and camera shake. We
observe that our method achieves the best performance with
low resolution and the worst performance with shape com-
plexity. Moreover, dynamic background and edge ambiguity
are also intractable.

2) DAVIS-17: We further conducted experiments on the
DAVIS-17 validation set to verify the effectiveness of the
proposed method for multiple object segmentation. Specif-
ically, comparison methods consist of online fine-tuning

based methods including OSVOS [4], OSVOS-S [32], On-
AVOS [51], CINM [1], MSK [37], MoNet [57], MVOS [58],
PReMVOS [31], and offline learning based methods in-
cluding RGMP [56], FAVOS [8], OSMN [62], RVOS [4§]
RANet [55], AGAME [23], Siam RCNN [52], SiamMask [53],
FEELVOS [49], SAT [5], STM [36].

Table III tabulates experimental results of different methods
on the DAVIS-17 validation dataset. We see that our method
achieves superior performance in comparison with state-of-
the-art methods. Moreover, our method has the lowest decay
rate for both the region similarity and contour accuracy except
SiamMask. Due to difficulties in multiple object segmentation,
the performance on the DAVIS-17 validation dataset is much
lower than that on the DAVIS-16 validation dataset with the
same method. While RANet achieves a comparable perfor-
mance with our method on the DAVIS-16 validation dataset,
it exhibits a worse result than our method on the DAVIS-17
dataset, proving that our method can effectively cope with
multiple objects in videos. STM consistently exhibits the best
performance by leveraging long-term information. PReMVOS
provides a similar result, but this method is too complex due
to the combination of segmentation, optical flow and Re-ID,
and it is far away from the real-time requirement in prac-
tical applications. Methods including RANet, MVOS, MSK,
OnAVOS, OSVOS, OSVOS-S exploit static image datasets for
pre-training. These methods witness a performance drop on the
DAVIS-17 validation dataset. The reason is that static image
datasets only contain one single object in each frame and the
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TABLE IV
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART ONLINE AND
OFFLINE LEARNING BASED METHODS ON THE DAVIS-17 TEST-DEV
DATASET BY USING 7, F, G METRICS.

Method g T Tmean jdecay + Fmean ]:(iecall‘l’
Online methods
OSVOS [4] 50.9 47.0 19.2 54.8 19.8
OSVOS-S [32] 57.5 52.9 24.1 62.1 21.9
OnAVOS [51] 52.8 49.9 23.0 55.7 23.4
CINM [1] 67.5 64.5 20.0 70.5 20.0
PReMVOS [31] 71.6 67.5 21.7 75.8 20.6
Offline methods
RGMP [56] 52.8 51.3 34.3 54.4 37.2
FAVOS [¢] 43.6 429 18.1 44.2 19.8
RVOS [48] 50.3 47.9 35.7 52.6 36.7
AGAME [23] 52.3 49.2 28.9 55.3 27.6
RANet [55] 55.4 53.4 21.9 57.3 22.1
Siam RCNN [52]  53.3 48.0 21.8 58.6 20.2
SiamMask [53] 432 40.6 21.9 45.8 22.4
FEELVOS [49] 57.8 55.1 29.8 60.4 335
AGAME [27] 52.3 49.2 28.9 55.3 27.6
STM [36] 72.2 69.3 16.9 75.2 17.5
Proposed method
Ours 62.0 60.2 23.5 63.8 25.3
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Fig. 7. Visualizations of performance and speed comparisons between our
method and state-of-the-art methods on the DAVIS-17 validation dataset.

pre-training on these datasets easily leads to over-fitting.

Moreover, we provided quantitative comparisons with state-
of-the-art methods. Table IV presents experimental results
on the DAVIS-17 test-dev dataset by using different semi-
supervised video object segmentation methods. We clearly see
that our method consistently achieves promising performance
on the DAVIS-17 test-dev dataset, and our method largely
improves the segmentation performance of offline methods
except STM. Since the predicted segmentation masks on the
DAVIS-17 test-dev dataset are online submitted and evaluated,
the ranking score of our method can be found on the website
of the semi-supervised DAVIS challenge.

We also visualized performance and speed comparisons on
the DAVIS-17 validation dataset to evaluate the effectiveness
and efficiency of different methods for multiple object segmen-
tation. In practice, most multiple object segmentation methods

10

TABLE V
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART ONLINE AND
OFFLINE LEARNING BASED METHODS ON THE YOUTUBE-VOS

VALIDATION DATASET BY USING J, F METRICS. Seen INDICATES THE
OBJECT CATEGORIES ARE AVAILABLE IN THE TRAINING STAGE, WHILE
UnSeen INDICATES THE OBJECT CATEGORIES ARE UNAVAILABLE IN THE

TRAINING STAGE. OVERALL IS THE AVERAGED SCORE OF Seen AND

UnSeen RESULTS.

Seen UnSeen

Method Overall
F J F
Online methods
OSVOS [4] 58.8 59.8 60.5 542  60.7
OnAVOS [51] 55.2 60.1 62.7 46.6 514
MSK [37] 53.1 599 59.5 45.0 479
PReMVOS [31] 66.9 714 759 56.5 63.7
Offline methods
RGMP [560] 53.8 59.5 - 45.2 -
AGAME [23] 66.1 67.8 - 60.8 -
OSMN [62] 51.2 60.0 60.1 40.6 440
RVOS [48] 56.8 63.6 672 455 510
S2S (offline) [60] 57.6 66.7 482 655 503
CapsuleVOS [13] 62.3 673 537 68.1 599
SAT [5] 63.6 67.1 553 702  61.7
STM [36] 79.4 79.7 84.2 72.8  80.9
Proposed method
Ours 66.5 723 578 733  62.6
TABLE VI

ABLATION STUDY ABOUT THE SEPARABLE STRUCTURE MODELING
BRANCH. EXPERIMENTS WERE CONDUCTED ON THE DAVIS-16 AND
DAVIS-17 DATASETS WITH (v') OR WITHOUT (X) THIS BRANCH.

. DAVIS-16 DAVIS-17
Metric
v/ X v/ X

G 1 85.9 84.5 71.6 76.0
T 1 86.2 85.1 75.3 73.6
Trecatt T 97.1 96.8 85.7 82.9
Jdecay »L 53 5.7 11.7 17.6
Fmean T 85.6 83.9 79.9 78.4
Frecatr 9223 89.6 88.0 85.8
}—decay ~L 5.6 7.2 15.3 21.0

require a longer time than single object segmentation methods.
As some methods only reported their runtime on the DAVIS-16
dataset, we did not show their results. The averaged time for
processing one video frame was recorded with a TITAN Xp
GPU. Fig. 7 depicts performance and speed comparisons on
the DAVIS-17 validation dataset. We observe that our method
consistently has a good balance between accuracy and speed,
compared with state-of-the-art methods.

3) YouTube-VOS: To evaluate the effectiveness and gener-
alization performance of our method on a large-scale dataset,
we conducted experiments on the YouTube-VOS dataset.

Table V presents experimental results on the YouTube-VOS
dataset by using different methods. We clearly observe that our
method attains very competitive performance on a large-scale
dataset over state-of-the-art methods except STM. Our method
also has a better generalization ability than most methods as
the result of unseen object segmentation is higher than that of
seen object segmentation. The reason may be that our feature
matching branch and separable structure modeling branch are
robust to objects. Notably, online fine-tuning based methods
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Shared heat map

Fig. 8. Visualization of heat maps of individual and shared features from the separable structure modeling branch on the DAVIS-16 dataset. The original
frame is shown on the left, and heat maps of individual features and shared feature are shown on the right. Best viewed in color.

TABLE VII
ABLATION STUDY ABOUT THE SEPARABLE STRUCTURE MODELING
BRANCH (SEP.). EXPERIMENTS WERE CONDUCTED ON THE
YOUTUBE-VOS DATASET WITH (v') OR WITHOUT (X) THIS BRANCH.

TABLE IX
ABLATION STUDY ABOUT DIFFERENT VOTING STRATEGIES (VOT.).
EXPERIMENTS WERE CONDUCTED ON THE YOUTUBE-VOS DATASET BY
USING MAXIMUM (MAX.), AVERAGE (AVG.), AND TOP RANK (TOP.).

Dataset Sep. G Jseen J unseen JF seen JF unseen Dataset Vot. G Jseen J unseen JF seen JF unseen
YouTube-VOS v 665 723 57.8 73.3 62.6 Max. 66.1  71.8 57.8 72.8 62.1
outube X 650 711 56.6 717 60.5 YouTube-VOS ~ Avg. 645  70.9 55.9 71.6 59.5
Top. 66.5 723 57.8 73.3 62.6
TABLE VIII
ABLATION STUDY ABOUT DIFFERENT VOTING STRATEGIES. TABLE X

EXPERIMENTS WERE CONDUCTED ON THE DAVIS-16 AND DAVIS-17
DATASETS BY USING MAXIMUM (MAX.), AVERAGE (AVG.), AND TOP
RANK (TOP.), RESPECTIVELY.

ABLATION STUDY ABOUT THE SPECIFIED NUMBER OF REPRESENTATIVE
REFERENCE PIXELS. EXPERIMENTS WERE CONDUCTED ON THE
DAVIS-16 AND DAVIS-17 DATASETS WITH 16, 32, AND 64 REFERENCE
PIXELS, RESPECTIVELY.

Metric DAVIS-16 DAVIS-17
Max. Avg. Top. Max. Avg. Top. Metric DAVIS-16 DAVIS-17

Gt 844 819 859 765 741 776 16 32 64 16 32 64
Tmean T 851 815 862 745 723 753 g1 842 859 839 760 716 757
Trecan T 970 897  97.1 842 829 857 Troan & 844 862 845 740 753 735
Jaecay ¥+ 51 110 53 132 144 117 Trecau T 953 971 967 843 857 836
mean 838 824 856 785 758 799 Tdecay 68 53 63 142 117 166
Frecar T 892 893 923 86.9 848 880 Fmean T 841 856 832 780 799 779
Fdecay + 69 116 56 163 181 153 Frecau T 908 923 892 860 880 859
Faccay b 6.1 56 80 184 153 202

usually have a poor generalization ability due to over-fitting.
For STM and PReMVOS, the performance of unseen object
segmentation drops sharply about 5.1 and 13.6. OSMN and
RVOS have the worst generalization at a performance drop of
17.8 and 17.2, respectively.

C. Ablation Studies

In this subsection, we conducted ablation studies to investi-
gate effects of the proposed structure modeling branch, voting
strategies, the number of selected reference pixels, shared and
individual features, and also provided time analyses.

1) Effect of Separable Structure Modeling Branch: Our
method consists of the feature matching branch and the
separable structure modeling branch. The separable structure
modeling branch leverages target object information from the
feature matching branch. To demonstrate the contribution of
the separable structure modeling, we conducted experiments
on the DAVIS-16, DAVIS-17, and YouTube-VOS validation

datasets with (v/) or without (X) this branch. Table VI and
Table VII tabulate experimental results under different set-
tings. We see that our method with the separable structure
modeling branch obtains better performance than that without
this branch on the DAVIS-16, DAVIS-17, and YouTube-VOS
validation datasets, which confirms that the separable structure
modeling branch contributes to performance improvement.

2) Effect of Voting Strategies: In the feature matching
branch, we selected top rank reference pixels of high con-
fidence to classify target pixels. We analyzed the influence of
different voting strategies including average and maximum of
all foreground or background pixels. Table VIII and Table IX
show experimental results on the DAVIS-16 DAVIS-17, and
YouTube-VOS datasets. We observe that the top rank strategy
achieves the best performance and the average strategy obtains
the worst result. The reason may be that it is unreasonable to
match all foreground or background pixels in the reference
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TABLE XI
ABLATION STUDY ABOUT THE SPECIFIED NUMBER OF REPRESENTATIVE
REFERENCE PIXELS. EXPERIMENTS WERE CONDUCTED ON THE
YOUTUBE-VOS DATASET WITH 16, 32, AND 64 REFERENCE PIXELS.

Dataset #Pixel G 7 seen J unseen JF seen JF unseen
16 657 719 56.8 72.9 61.2
YouTube-VOS 32 665 723 57.8 73.3 62.6
64 649 715 55.7 72.3 60.0
TABLE XII

ABLATION STUDY ABOUT INDIVIDUAL AND SHARED FEATURES IN THE
SEPARABLE STRUCTURE MODELING BRANCH. EXPERIMENTS WERE
CONDUCTED ON THE DAVIS-16 AND DAVIS-17 DATASETS WITHOUT
INDIVIDUAL FEATURES (I) OR WITHOUT (S) SHARED FEATURE.

. DAVIS-16 DAVIS-17
Metric

w/o S w/o 1 w/o S w/o 1

g7 85.1 84.2 71.3 76.2
Tmean T 85.6 84.4 74.9 73.9
Trecatl T 96.4 95.3 85.1 83.0
jdecay xL 6.3 6.8 12.6 14.8
Fmean T 84.7 84.1 79.6 78.5
JErcraalil T 92.0 90.8 87.6 86.0
Fdecay + 6.3 6.1 15.7 17.9

frame to a target pixel and target pixels should match local
regions in the reference frame. Therefore, the average strategy
attains the worst performance. Moreover, for the maximum
strategy, the reference pixel with the maximal ranking score
is easily affected by outliers and noisy pixels.

3) Effect of the Selected Number of Reference Pixels: For
the top rank voting strategy, the number of selected pixels
has a great influence on the feature matching and structure
modeling branches. To evaluate the effect of this parameter, we
conducted ablation studies with 16, 32, and 64 representative
reference pixels. Table X and Table XI present experimen-
tal results on the DAVIS-16, DAVIS-17, and YouTube-VOS
datasets with different numbers of selected reference pixels.
We clearly observe that our method achieves the best and
worst performance when the numbers of selected pixels are
set as 32 and 64, respectively. Notably, selecting too many
reference pixels may lead to a wrong selection, which is a
much severer issue. When the pixel number is set as 16, we
observe that our method still obtains inferior results as they
cannot fully represent target objects.

4) Effect of Individual and Shared Features: To analyze
the influence of individual and shared features, we further
conducted ablation studies without either individual or shared
features. Table XII and Table XIII present experimental results
on the DAVIS-16, DAVIS-17, and YouTube-VOS validation
datasets. We observe that without either individual features
or the shared feature, the performance of our method drops.
Individual features play a more important role than the shared
feature because individual features are attentive to detailed
information about object components.

5) Time Analyses: Moreover, we provided time analyses
about the multiple object segmentation extension. Table XIV
tabulates the average inference time for processing one frame
on DAVIS-16, DAVIS-17, and YouTube-VOS. We clearly ob-
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TABLE XIII
ABLATION STUDY ABOUT INDIVIDUAL AND SHARED FEATURES IN THE
SEPARABLE STRUCTURE MODELING BRANCH. EXPERIMENTS WERE
CONDUCTED ON THE YOUTUBE-VOS DATASET WITH (v) OR WITHOUT
(X) INDIVIDUAL (I) AND SHARED (S) FEATURES.

Dataset S 1 G J seen J unseen JF seen JF unseen
X v 657 716 57.4 72.5 61.3
YouTube-VOS v X 650 715 56.2 72.0 60.1
v / 665 723 57.8 73.3 62.6
TABLE XIV

THE AVERAGED INFERENCE TIME (MILLISECOND) FOR PROCESSING EACH
VIDEO FRAME ON THE DAVIS-16, DAVIS-17, AND YOUTUBE-VOS
DATASETS, RESPECTIVELY.

Dataset Ours One-by-one
DAVIS-16 27.4 27.4
DAVIS-17 44.9 55.2
YouTube-VOS 413 47.6

serve that our multiple object extension strategy is much more
time-efficient than the one-by-one strategy on the DAVIS-17
and YouTube-VOS datasets. Since DAVIS-16 is a single object
segmentation dataset, the average inference time for the one-
by-one strategy and our strategy is the same. DAVIS-17 and
YouTube-VOS are multiple object segmentation datasets and
our method takes less time to process one frame in inference.

D. Visualization and Qualitative Results

In this subsection, we first performed feature visualizations
for a better understanding of the structure modeling branch
and then visualized segmentation results of example videos.

1) Visualizations of Separable Structure Modeling Branch:
In the separable structure modeling branch, we selected 32
target pixels to represent object components, where individual
features and the shared feature were learned by using attentive
maps. We computed heat maps by averaging these features in
the dimension direction. Fig. 8 depicts heat maps of individual
features and the shared feature on the DAVIS-16 dataset. We
clearly observe that heat maps of individual features have
high responses on object components, while that of the shared
feature has a high response on the whole object. Visualizations
validate that our individual and shared features can well focus
on object components and the whole object.

2) Visualizations of Example Videos: We further presented
some example segmentations to intuitively evaluate quali-
tative results of the proposed method. Fig. 9 depicts the
predicted segmentation masks on the DAVIS-16, DAVIS-17,
and YouTube-VOS datasets. Example video sequences consist
of several challenges including background clutter (the first
example), interacting objects (the second, third, fourth, and
fifth examples), fast motion (the second and fourth examples),
occlusion (the third and fourth examples), and non-linear
deformation (the first, second, and fifth examples). According
to Fig. 9 and Table II, we clearly observe that our method
produces accurate segmentation results on the first, second,
and third videos, which mainly contain non-linear deforma-
tion, fast motion, and background clutter. Furthermore, we
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Failure Cases

Fig. 9. Visualizations of segmentation results on the DAVIS-16, DAVIS-17, and YouTube-VOS datasets. Failure cases on the DAVIS-17 dataset are also

depicted in the last two rows. Best viewed in color.

also provided failure cases on the DAVIS-17 dataset in the
last two rows. In the fourth video, our method fails in passing
through a tree when occlusion happens. Moreover, in the fifth
video, the proposed method unfortunately mistakes pixels from
the closest object. These two visualization results indicate
that interacting objects and occlusion cause confusion to our
method.

V. CONCLUSION

In this paper, we have proposed a fast semi-supervised
video object segmentation method. Our method consists of
the feature matching branch and the separable structure mod-
eling branch. The feature matching branch matches annotated
reference pixels to target pixels, while the separable structure
modeling branch leverages object prior information from the
feature matching branch, and models components of target
objects by using the learned individual and shared represen-
tations. Finally, representations from these two branches are
concatenated and are further fed into the decoder for object
segmentation. Experimental results on three standard datasets
have verified the effectiveness and efficiency of our method. In
the future, we will attempt to incorporate long-range temporal
information into our framework.
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